# Hybrid Reasoning for Mobile Manipulation based on Object Knowledge

#### **Daniel Leidner and Christoph Borst**

#### Institute of Robotics and Mechatronics, German Aerospace Center (DLR)





#### **Motivation**

Given a manipulation task, a robot has to reason about the *symbolic* order of the actions, but also about the *geometric* execution.

Detailed knowledge about the *functionality* of the objects is required.

Mobile manipulation tasks require additional *spatial knowledge*.



#### **Motivation**

Given a manipulation task, a robot has to reason about the *symbolic* order of the actions, but also about the *geometric* execution.

Detailed knowledge about the *functionality* of the objects is required.

Mobile manipulation tasks require additional *spatial knowledge*.





#### Integrating Object Knowledge into Hybrid Reasoning





#### Integrating Object Knowledge into Hybrid Reasoning (cont.)





#### Integrating Object Knowledge into Hybrid Reasoning (cont.)





# Integrating Object Knowledge into Hybrid Reasoning (cont.)

```
def place(target name, manipulator):
    target = objects[target name]
   plane = target.roi
    z = plane[0,2]
   x = random.uniform(plane[0,0], plane[1,0])
   y = random.uniform(plane[0,1], plane[1,1])
    target frame = dot(target.frame, txyz(x, y, z))
    self.history["place"].append(target frame)
    if len(self.history["place"]) > N:
        raise RuntimeError("could not place object")
   op = [
        ("plan to frame", manipulator, target frame),
        ("move hand", manipulator, self.pre grasp),
        ("move hand", manipulator, self.app grasp),
        ("release", manipulator, self.name),
    return op
```

A symbolic transition is provided by a symbolic planner





A symbolic transition is provided by a symbolic planner

Geometric alternatives are attempt





A symbolic transition is provided by a symbolic planner

Geometric alternatives are attempt repeatedly in case of failure





A symbolic transition is provided by a symbolic planner

Geometric alternatives are attempt repeatedly in case of failure





A symbolic transition is provided by a symbolic planner

Geometric alternatives are attempt repeatedly in case of failure





A symbolic transition is provided by a symbolic planner

Geometric alternatives are attempt repeatedly in case of failure

If all alternatives have been attempted a backtracking mechanism is initiated





A symbolic transition is provided by a symbolic planner

Geometric alternatives are attempt repeatedly in case of failure

If all alternatives have been attempted a backtracking mechanism is initiated





# **Base Positioning for Mobile Manipulation**



(:goal(and (on mug1 shelf) (on mug2 shelf) ))



**Base Positioning for Mobile Manipulation** 

Where should a mobile robot move to fulfill a task?



(:goal(and (on mug1 shelf) (on mug2 shelf) ))



**Base Positioning for Mobile Manipulation** 

Where should a mobile robot move to fulfill a task?

When does a mobile robot has to move its mobile base?



(:goal(and (on mug1 shelf) (on mug2 shelf) ))



# **Optimal Base Positioning**

Capability Maps to represent reachability for robotic manipulators





# **Optimal Base Positioning**

Capability Maps to represent reachability for robotic manipulators, and Regions of Interest (ROI) based on object knowledge:

- Object specific: bounding box, table planes, storage positions, ...
- Action specific: pick, place, open, stack, ...



# **Optimal Base Positioning**

Capability Maps to represent reachability for robotic manipulators, and Regions of Interest (ROI) based on object knowledge:

- Object specific: bounding box, table planes, storage positions, ...
- Action specific: pick, place, open, stack, ...



**Optimal Base Positioning (cont.)** 

Optimizing the mean reachability  $r_{roi}$  within the given ROI:





#### **Optimal Base Positioning (cont.)**

A\* Planner to navigate to the ROI center (unfeasible due to collision)

```
Algorithm: NAVIGATETOOBJECT(object)# map initially emptymap \leftarrow CREATEEMPTYMAP()# map initially emptyreached \leftarrow False# map initially emptyroi \leftarrow object.roi# map initially emptywhile reached \leftarrow True# get a-star path and checkdo\begin{cases} path \leftarrow ASTARFINDPATH(map, roi) \\ if CHECKCOLLISION(path) = False \\ then {reached \leftarrow True} \\ else {UPDATEMAP(map) \\ if CHECKREACHABILITY(roi) \ge 0.1 \\ then {reached \leftarrow True} \end{cases}}
```

OptimizeReachability(roi)

# optimize final position

# Integrating Mobile Manipulation into Hybrid Reasoning

```
(:action place
  :parameters (?o - _object ?s - _tray ?m - _manipulator)
  :precondition (bound ?o ?m)
  :effect (and (on ?o ?s) (not(bound ?o ?m)) (free ?m))
)
```

# Integrating Mobile Manipulation into Hybrid Reasoning

```
(:action place
  :parameters (?o - _object ?s - _tray ?m - _manipulator)
  :precondition (bound ?o ?m) (reachable ?o ?m)
  :effect (and (on ?o ?s) (not(bound ?o ?m)) (free ?m))
)
```

Geometric property for symbolic reasoning

No geometric feedback in pure symbolic planning

→ Postpone decision to geometric reasoning step, if the current reachability for the ROI is beneath  $r_{min} = r_{max} * 0.5$ 



# **Evaluation**

Experiment in simulation where the humanoid robot Rollin' Justin has to place two mugs on a shelf



#### Discussion

Benefits and drawbacks of two step reasoning procedure

- inappropriate symbolic solution
- + less time consuming
- + modularity easier to handle

Benefits and drawbacks of separating navigation and motion planning

- generality decreases
- + suitable for larger goal regions



#### Conclusion

Hybrid reasoning based on object knowledge

- Action templates to describe process models
- Integrated geometric backtracking

Optimal base positioning for mobile manipulation

• Intersection between capability maps and object ROI

Integrating mobile manipulation into hybrid reasoning

• Geometric reasoning without symbolic overhead

Evaluation in a simulated experiment

• Experiments on the real robot in the near future



Thank you for your attention!

