
Lazy Evaluation and Subsumption 
Caching for Search-Based Integrated 

Task and Motion Planning 
 

 

Christian Dornhege, Andreas Hertle, 
Bernhard Nebel 

{dornhege,hertle,nebel}@informatik.uni-freiburg.de 

 

Foundations of Artificial Intelligence 

University of Freiburg 



Planning and Robotics 

• Robot skills map to symbolic 
actions 

• Task planning well suited 
for solving such problems 

• Real-world contains 
• Numerical values 

• Arbitrary/unexpected 
situations 

• Geometric problems 



Integrated Task and Motion Planning 

• Consider geometric constraints in addition 
to logical ones 

• Predicate semantics defined by external 
modules 
• Conditions 

• Numerical effects 

• Cost 

• Problem: Time intensive (in comparison to 
logical reasoning) 



Generality vs. Efficiency 

• Generic interface abstracts modules from 
planner 

• State of the art handling of symbolic 
planning part 

• Agnostic about (slow) module calls 
(besides sorting in conditions) 

→ Make the planner aware without loosing 
soundness or interfering with general 
priniciples 



Techniques 

• Caching methods 

• Full State Caching 

• Partial State Caching 

• Subsumption Caching 

• Global Caching 

• Lazy module evaluation 



Full State Caching 

• Cache computation results for all modules 
as one request 

• Cache key pair 𝑠, 𝑜 

• Same 𝑠, 𝑜 requests for 
• Different kind of module – condition or effect 

for same operator 

• Same module – e.g. revisiting search path 
from better state 

• Easy to implement (generic in planner) 



Partial State Caching 

• Full state contains values irrelevant for 
computation 

• Use partial state 𝑠𝑃 ⊑ 𝑠 for caching, where 
𝑠𝑃 is a partial variable assignment 

• Matches set of states {𝑠′ ∈ 𝑆: 𝑠𝑃 ⊑ 𝑠′} 

• Needs module specific implementation as 
planner can‘t know what‘s relevant 
• Minimal variables are easy/straight-forward to 

determine from computation 



Subsumption Caching 

• Reuse information from 
different requests 

• On request: Check if 
request is less 
constrained than some 
success 𝑠, 𝑜 

• On miss: Remove 
cached states that are 
less constrained 

• Analogous for failures 

State 𝑠− is less constrained than 

𝑠 for operator 𝑜 if 

𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒(𝑠, 𝑜)
⇒ 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒(𝑠−, 𝑜) 



Global Caching 

• Complementary to other methods 

• Retain cache results between planner runs 
in persistent storage 

• Requires to be able to store complete 
request for soundness 



Lazy Module Evaluation 

Open queue 

Closed List 

Operators 



Fetch Next State 



Applicability Check 



Successor Generation 



Lazy Evaluation 

• Applicability checks slow 

• Performed for open state – that might 
never be visited 

• Replace by module relaxed applicability 

 

For an operator 𝑜 the operator 𝑜+ is a 
relaxation if for all states 𝑠 

𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒(𝑠, 𝑜) ⇒ 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒(𝑠, 𝑜+) 



Lazy Evaluation 



Relaxed Applicability Check 



Successors: State + Operator 



Fetch Next State + Applicability 



Experiment Settings 

• All objects to front table 
and wipe spots 

• 1-5 objects, 2 
configurations each 

• Modules for navigation cost, 
wiping, putdown poses 

• Anytime planning with 25% 
extra time 

• Run each task to 
completion with replanning 



Results – Eager/Lazy 

• Total planning time scales with execution time 

• Fast enough for practical systems 

• Lazy module evaluation is faster in comparison to eager 



Results – Caching Putdown 

• No caching/full state caching impractical 

• Largest improvement full state vs. partial state caching 

• Subsumption caching effective mainly for larger tasks 

 

• (Global caching worked well for navigation) 



Example Task: 3 Objects (15x) 



Summary/Discussion 

• Geometric computations are expensive in any 
symbolic reasoning tool 

• Avoid them whenever possible 

• Caching techniques work 
• Partial state is the intuitive implementation 

• Subsumption caching theoretically better, but needs 
non-trivial constraints 

• Lazy module evaluation is faster 



Lazy Evaluation and Subsumption 
Caching for Search-Based Integrated 

Task and Motion Planning 
 

 

Christian Dornhege, Andreas Hertle, 
Bernhard Nebel 

{dornhege,hertle,nebel}@informatik.uni-freiburg.de 

 

Foundations of Artificial Intelligence 

University of Freiburg 


