
Lazy Evaluation and Subsumption Caching for Search-Based

Integrated Task and Motion Planning

Christian Dornhege Andreas Hertle Bernhard Nebel

Abstract—State of the art classical planning systems can
efficiently solve large symbolic problem instances. Applying
classical planning techniques to robotics is possible by in-
tegrating geometric reasoning in the planning process. The
problems that are solvable in this way are significantly smaller
than purely logical formulations as many costly geometric
calculations are requested by a planner. Therefore we aim to
avoid those calculations while preserving correctness.

We address this problem with efficient caching techniques.
Subsumption caching avoids costly computations by caching
geometric queries and beyond answering the same queries
also considers less or more constrained ones. Additionally, we
describe a lazy evaluation technique that pushes applicability
checks for successor states performing geometric queries to
a later point. As we are interested in the performance of
our planner not as a standalone component, but as part of
an intelligent robotic system, we evaluate those techniques
embedded in an integrated system during real-world mobile
manipulation experiments.

I. INTRODUCTION

Solving complex tasks that combine many different skills

is an essential problem for mobile manipulation robots in a

household scenario. Applying the robot’s capabilities to the

task at hand requires a behavior that utilizes the available

skills in a goal-directed manner. Skills such as picking up

an object or moving the robot can be viewed as symbolic

actions. Finding an action sequence that leads to the desired

goal is no trivial task [1] as one needs to consider constraints

between heterogeneous actions for arbitrary situations and

the possible combinations easily grow very large. This is

a task that a symbolic planner is well suited for. However,

one cannot abstract away the geometric constraints that arise

when acting in the real-world. For example consider the

cleaning task in Figure 1: The robot must not only ensure

that the object standing on the spot to clean is removed, but

that a collision-free trajectory exists for the wipe motion.

Therefore many state of the art systems use an integrated

task and motion planner [2], [3] that incorporates arbitrary

reasoners in the symbolic planning process. In addition many

systems [4], [5], including ours, don’t follow a plan blindly

once it has been computed, but use a continual planning

approach. The planner is embedded in an observation, mon-

itoring and execution loop. During the execution of a plan

the robot’s state is estimated and monitored by the planner

to verify that the current plan still leads to the goal. If this

All authors are members of the University of Freiburg,
Department of Computer Science, 79110 Freiburg, Germany,
email:{dornhege,hertle,nebel}@informatik.uni-freiburg.de.

This work was partially supported by DFG grants SFB/TR-8 project R7,
EXC 1086 BrainLinks-BrainTools, and grant NE 623/13-1.

Fig. 1. This figure shows the PR2 robot during the execution of a tidy up
task. The robot picks up a bowl to wipe the spot where it was placed.

is not the case, replanning is triggered to come up with

a plan that fits the current situation. This helps to recover

from execution failures and to react to unexpected percepts

in a partially observable environment. Still, guaranteeing suc-

cessful completion of complex tasks is a hard problem that

requires some assumptions to be made about the world [5].

We also address those assumptions allowing our robot to act

under real-world constraints such as partial observability and

non-deterministic actions [6]. A more detailed description of

our full system is available in our previous work [7].

In this paper we focus on the efficiency of integrated task

and motion planning specifically for search-based planners.

We integrate arbitrary reasoners in our planner Temporal Fast

Downward/Modules (TFD/M) using the concept of semantic

attachments [8]. During the search process external modules

query these reasoners for geometric facts like “Where can

I put this cup on the table?” Such operations take several

orders of magnitude longer than determining the truth value

of purely symbolic facts. Not surprisingly a substantial part

of the planning time is consumed by external computations.

Therefore our main goal is to avoid such module calls when-

ever possible without losing the soundness of the produced

plans.

We define several caching techniques that store computed

results and are applicable to any integrated reasoning sys-

tem. Partial state caching uses a minimal cache key to

represent a query, so that the same computation is never

done twice. Our first contribution is extending this method

to subsumption caching that is able to answer queries if

they are subsumed by another cached query. Second, we

introduce a lazy evaluation method that postpones module

calls arising during successor generation and thereby avoids

geometric computations for states in the search queue. Third,

we evaluate these techniques in real-world experiments on

the PR2 robot solving mobile manipulation tasks. Besides

comparing the effectiveness of our methods, we present

an overview of the overall system performance using an

integrated task and motion planner in a realistic application

scenario.

II. RELATED WORK

Applying high-level reasoning techniques to real-world

robotics problems requires the integration of logic-based

and geometric representations. Beetz et al. [9] developed a

plan based controller. Learned action sequences are stored

in a plan library to be combined and adapted to the current

situation and task. Kresse and Beetz [10] use constraints as a

common symbolic and geometric interpretation to efficiently

solve complex problems guided by a symbolic plan.

Producing plans that are sound on the symbolic as well

as the geometric level requires an integration of task and

motion planning. One way is to use a symbolic planner

to guide expansions of roadmaps by imposing constraints

on geometric configurations [1]. Our previous work focused

on integrating arbitrary reasoners directly into the planning

process [8]. Current approaches can deal with incomplete

knowledge and beliefs while integrating geometric reasoning

into the planning process [2], [4].

Computing motion plans as part of a symbolic plan is

a costly process. Srivastava et al. [11] interleave task and

motion planning and feed symbolic facts determined by

motion planners back into the classical planner to avoid

committing early to instantiations of continuous operators.

Another way is to plan in the now [5] using abstract versions

of operators for plan steps far enough in the future. Other

approaches focus on reuse of solutions: in their combined

task and motion planner Wolfe et al. [3] use subtask-specific

irrelevance to reuse trajectories that have been computed

before. This concept is similar to what we call partial

state caching, which we extend even further to subsumption

caching. In the context of classical planning Eyerich et al. in-

vestigated subsumptions of planning operators [12], although

without connecting this concept to geometric constraints.

In classical planning heuristics can be approximated by

the heuristic value of the parent state, so that computation-

ally expensive heuristics are never computed for states in

the search queue [13]. We use a similar concept to avoid

geometric computations for queued states.

III. INTEGRATED TASK AND MOTION PLANNING

WITH SEMANTIC ATTACHMENTS

We will now state basic definitions that we use to describe

a planning task and then discuss, how generic motion plan-

ners are integrated by using semantic attachments.

A. Planning Task

Our planner TFD/M uses the well known planning domain

definition language (PDDL) to describe planning tasks. It is

originally based on Fast Downward [14] that grounds and

translates PDDL definitions to a finite domain representa-

tion (FDR). Our definitions are derived from the work by

Helmert [15], but adapted to focus on the parts relevant

for integrating task and motion planning. In particular we

deal only with Boolean and numerical values and ignore

conditional effects.

Definition 1. A planning task is a tuple P =
(V, VN , I, G,O), where V is a finite set of logical variables,

VN is a finite set of numerical variables, I is the initial state,

G is a goal formula in propositional logic and O a finite set

of operators.

The set of all possible variable assignments defines the set

of all possible states—the state space S.

Definition 2. A (full) state s is a function s : V ∪ VN →
{true, false} ∪ R, where s(v) ∈ R if v ∈ VN and s(v) ∈
{true, false} if v ∈ V . For a propositional formula φ, φ(s)
denotes the evaluation of φ on the variable assignment s.

Transitions from one state to another are defined by

operators.

Definition 3. An operator o is a tuple (φ, e, cost), where
φ is a propositional formula about the set of variables V

called the precondition, e an effect, and cost ∈ R+. We

write cost(o) to denote the cost of an operator o.

An operator o is applicable in state s or applicable(s, o)
is true, iff φ(s) is true.

Effects are applied to a state s in the usual way following

PDDL semantics. A plan for a planning task P is a finite

sequence of applicable operators that when applied to the

initial state lead to the goal.

B. Semantic Attachments

For now we only described classical planning tasks with-

out any integration of other reasoners. Also, the set of

numerical variables VN is not utilized, although numerical

values are surely relevant to describe real-world problems.

PDDL [16] provides a numerical extension, but its expres-

siveness is not general enough to handle robotics tasks.

The idea behind semantic attachments is that certain

parts of a planning task—namely variable evaluations in

applicability checks, effects on numerical variables, and

operator costs—can have semantics attached to them that

are computed by an external module.

A condition checker module allows to determine truth

values of logical variables by an external function call. We

use condition checkers to determine if an object can be

placed on a table. Consider the following excerpt from the

putdown-object action:

(:action putdown-object

:parameters (?l - location ?o - movable

?s - static ?a - arm)

:precondition

(and (grasped ?o ?a)

([canPutdown ?o ?a ?s ?l]) ...)

Square braces signal that canPutdown has a semantic

attachment. Our implementation for canPutdown uses a

discretization of the table surface and determines if there are

any reachable poses given the attached object and configura-

tion of objects on the table. For wiping a condition checker

tests whether a wipe spot is free of obstructing objects.

An effect applicator allows to update numerical state vari-

ables based on the computation of an external function. Simi-

larly to the canPutdownmodule, we define the effect appli-

cator updatePutdownPose in the putdown-object

action. The declaration of the updatePutdownPose mod-

ule is given by:

(updatePutdownPose ?o - movable

?a - arm ?s - static ?l - location

(x ?o) (y ?o) (z ?o)

(qx ?o) (qy ?o) (qz ?o) (qw ?o)

effect updatePutdownPose@libput.so)

The list (x ?o) ... (qw ?o) gives the list of numerical

variables to be updated—in this case the new 6-dof pose

of the object to be placed that we derive from the same

computation as the canPutdown module.

A cost module computes the operator cost by an external

function. We provide a cost module for navigation that calls

a path planner [17] and returns the path cost. A set of

navigation locations is given to the robot along with a 3d

map [18] to the navigation module.

C. Search

We define the planning problem as finding a valid plan

with minimal cost for a given task P . Our planner uses

forward-chaining best first search in the state space. An open

queue is seeded with the initial state. In each step the first

state is removed from the open queue, which is sorted by

heuristic estimates of the states. If this state fulfills the goal

formula, a plan was found. Next, all operators are tested for

applicability in this state and the successors are in turn added

in the open queue.

As finding minimal cost plans is often hard in practice one

aims to find a satisficing plan that might not be optimal, but

has satisfying costs. For this reason the heuristic needs not to

be admissible. Often the search continues even after a plan

is found until either the open queue is empty or a timeout is

reached.

IV. CACHING TECHNIQUES

In relation to classical planning applying an operator or

just testing for applicability can take orders of magnitude

longer when external modules are called. Therefore the main

goal of the techniques introduced in this section is to avoid

as many module calls as possible while retaining soundness.

One way is to cache results to module calls. Differ-

ent types of modules might require the same computa-

tion. Therefore, computation results are stored instead of

just the return values for a specific module and the same

cache is exchanged between compatible modules. For exam-

ple, our canPutdown condition checker stores the com-

puted putdown pose of the object. Subsequent calls to the

updatePutdownPose effect applicator can now access

the pose without recomputing the motion. We name a call

to any type of module a request. The caching techniques

presented in this section are able to store computation results

for such requests and thus can be applied generally in any

system that issues such requests.

A. Full State Caching

The full state s paired with the operator o that the request

was issued from is used as a key. The cache hits those cases,

where the same request might be issued multiple times, e.g.

when revisiting a state that a shorter path was found to.

B. Partial State Caching

A partial state sp ⊑ s is computed by the module and

used as the cache key together with the operator o.

Definition 4. A partial state sp ⊑ s is a partial variable

assignment, i.e. a function sp : V p → {true, false} and

sp : V p

N → R, where V p ⊆ V and V
p

N ⊆ VN .

This partial state must contain all relevant information for

the computation. A minimal partial state is straight-forward

to determine as it consists of all variables used in the module

computation. Consider a putdown motion that only cares

about objects near the robot. A partial state implicitly defines

the set of states Sp = {s′ ∈ S|sp ⊑ s′}. Any request for

a state in Sp will hit the same cache entry. |Sp| determines

the advantage of partial state over full state caching.

C. Subsumption Caching

We take the idea of a partial state one step further and

include requests for different states. The idea is to build a

subsumption hierarchy1 of more or less constrained states.

Fig. 2. This figure shows the subsumption hierarchy for successful
requests to put an additional object on the table. When a putdown request
succeeded on the table with two objects already placed, we can infer that less
constrained cases must also succeed without the need to do any calculations.

Take the example of a putdown request for an object that

succeeded when two objects were already placed on the

table. Now if only one object were present, a request will

surely succeed as it is less constrained (always given the

same object positions and dimensions). This is illustrated in

Figure 2. On the other hand, when a putdown request failed

with three objects present, requests with four objects must

also fail. We use this principle in our putdown modules.

Definition 5. For a state s and operator o a state s−

is less constrained, i.e., s− ≤o s iff applicable(s, o) ⇒
applicable(s−, o). Likewise, a state s+ is more constrained

iff s ≤o s+.

1This term is not to be confused with the well known subsumption
architecture. Here we mean logical subsumption.

Algorithm 1 Subsumption Caching request for s, o

Cache Mapping Successes : S ×O → Result

Cache Mapping Failures : S ×O → Result

for all (s′, o′ 7→ r′) ∈ Successes do

if s ≤o s′ and o = o′ then

return r′

for all (s′, o′ 7→ r′) ∈ Failures do

if s ≥o s′ and o = o′ then

return r′

// Cache miss, compute and insert into cache

r, success← computeRequest(s, o)
if success then

for all (s′, o′ 7→ r′) ∈ Successes do

if s ≥o s′ and o = o′ then

// Subsumed by s, o

Remove (s′, o′ 7→ r′) from Successes

Insert (s, o 7→ r) into Successes

else

for all (s′, o′ 7→ r′) ∈ Failures do

if s ≤o s′ and o = o′ then

Remove (s′, o′ 7→ r′) from Failures

Insert (s, o 7→ r) into Failures

return r

For a (partial) state s and operator o, we test if s is less

constrained than some state s′, where the request succeeded.

Analogously we check whether s is more constrained than

some state s′′, where the request failed. Should neither test

match, the request is computed and the result added to the

cache. We build a subsumption hierarchy of cached requests

by only retaining the most constrained states for succeeded

requests and the least constrained states for failed requests in

the cache. Algorithm 1 illustrates the procedure. Note that in

comparison to the first two caching methods the constraint

relation is domain dependent. Without a non-trivial constraint

relation subsumption caching becomes partial state caching.

Thus, if such a relation can be found, subsumption caching

dominates partial state caching.

D. Global caching

As we use continual planning, the planner might be called

multiple times during a task. Global caching reuses cache

entries from previous planner calls. To ensure soundness, we

require that the cached information fully defines the module

computation. This technique is complementary to the above

mentioned and thus can be combined with either.

V. LAZY MODULE EVALUATION

Lazy module evaluation tackles the same point in the

search as a technique from classical planning named de-

ferred heuristic evaluation [13]. Many successor states are

generated and pushed in the open queue, but might never be

visited. Deferred heuristic evaluation identifies heuristic cal-

culations as the expensive operation. By taking the heuristic

measure of the successor’s parent instead of the successor

itself, only a single heuristic computation is needed for all

successors. In our case, generating successors is the costly

part as this means computing applicable(s, o), which might

call modules. Therefore, we defer these calculations to a later

time by using a relaxed version of an operator to perform

the applicability-check.

Definition 6. The operator o+ is a relaxation of an op-

erator o if for all states s ∈ S: applicable(s, o) ⇒
applicable(s, o+).

This will never discard applicable states, but might include

inapplicable ones. Therefore, we cannot compute a successor

state and instead store the pair s, o implicitly defining the

successor. The additional problem that we cannot calculate

a heuristic value without the successor is easily solved by

applying deferred heuristic evaluation. The issue of possibly

inapplicable open queue entries is addressed once a state is

taken out of the queue to be expanded. If applicable(s, o)
fails at this point, we continue by taking the next state out

of the open queue. Note that in comparison to replacing

applicability checks by faster, approximate versions this

method is sound.

We derive relaxed operators if the operator condition is a

conjunction containing module variables as positive literals,

which is often the case. The simplest option is to skip all

module calls. A better way is offered by our module interface

that optionally calls a fast, relaxed version. Often there is an

obvious way to come up with such a relaxation. Consider

for example the canPutdown condition checker: Instead of

computing a motion plan, the relaxation could test whether

the goal configuration is collision-free.

VI. EVALUATION

Fig. 3. This figure shows four of the evaluation settings. The task was to
bring all objects to the front table and wipe the spot under each object.

We evaluated our system on the PR2 robot. One to five

objects were positioned in two different configurations for

each number of objects (see Figure 3). The goal was to

find all objects, bring them to a specific table and wipe

the initial location of each object, so each object had to be

interacted with at least once. Pick, place and object detection

functionality was provided by the standard software for the

PR2 [19]. Wiping followed a minimal traveling salesman

path in joint space [20].

Each setting was executed until the system reported the

task to be completed. For each call we ran the planner

with lazy and eager module evaluation. After the first plan

was found the anytime search continued for another 25% of

the time. This way we automatically adapt to the problem

complexity. The plan from the lazy solution was executed.

We used partial state caching and stored results globally.

A. System Performance

We investigate the overall system performance in Table I.

For each task we give the total accumulated planning time for

lazy and eager module evaluation, as well as the maximum

time for a single plan. Single plan times show how hard the

task itself was once all objects had been seen for a first time.

Subsequent planner calls might have cached computations or

face a problem that is already partially solved by the robot’s

previous actions. During the experiments two tasks were not

fully completed. In task 6 one wipe action could not be

executed and in task 9 the robot placed an object too far on

the edge dropping it unrecoverably. Nevertheless, the system

continued to solve all remaining goals.

As expected we observe increasing planning and execution

times the more objects are present. The relation between

execution and total planning time indicates the usability as a

practical system. Besides the number of objects additional

factors are the initial object placements and the order in

which the robot finds and interacts with objects. If the robot

solves the task partially for some objects before finding

others, later planning calls might be easier. Such eagerness

might be advantageous, but can have adversary effects if

those solved objects block others later on. For smaller

problems planning time was considerably lower than for

larger ones. We see that in relation to the execution time

planning scales slightly worse, which is not a surprise given

the combinatorial nature of the problem. Comparing lazy and

eager module evaluation we observe that lazy evaluation is

able to find plans faster than eager evaluation.

B. Caching Techniques

We perform a detailed comparison of the different caching

techniques. For each module call, we determined if each

caching strategy produced a hit or miss. We also recorded

the time it would have taken to compute the query for a miss.

Recorded times for all queries are accumulated over each run.

Module computations were only performed if partial state

caching had a miss. No caching or full state caching misses

would repeat identical computations and in these cases we

use the stored time from partial state caching. If subsumption

caching misses, we use the time from partial state caching.

Note that we must perform all partial state computations,

even if subsumption caching hits as this might have been

subsumed from a different partial state. We omit the time it

takes to answer a cache hit, which in our case is much lower

than the computation time for a miss.

Table II shows caching misses and times for putdown

module calls. As expected, no caching or full state caching

are quite inefficient and not feasible in practice. Also there

is no difference for full state caching with or without global

caching, mainly due to the fact that the full state contains

the current robot state, which is unlikely to be exactly the

same between planner calls. Partial state caching performs

considerably better than those techniques as it never repeats

the same calculation. Subsumption caching is able to reduce

cache misses even further. We presume that the impact would

be greater for even more complex problems.

Global caching is also able to reduce cache misses, mainly

in tasks 6 and 7. Table I shows that those tasks required

multiple re-planning steps that were able to utilize the stored

computations. Although subsumption caching dominates par-

tial state caching, in task 6 we see more misses for subsump-

tion caching than partial caching in conjunction with global

caching. Those were due to numerical inaccuracies when

converting global cache keys back to poses, which is only

required when matching states in subsumption caching. We

also investigated the navigation module and partial caching

proved similarly effective. As subsumption caching is not

applicable in this case, we omit those results for space

reasons.

VII. CONCLUSIONS

We presented caching and lazy evaluation techniques

implemented in our integrated task and motion planner

and investigated their efficiency in real-world experiments

when the planner was embedded in a high-level continual

planning executive. The system was able to successfully

handle unexpected events and adapt to new situations by re-

planning. Lazy module evaluation notably reduces planning

time for search-based planners.

The caching techniques are not limited to search based

planning. Full state caching is easy to implement, but not

as effective as partial state caching, which however needs

a case-by-case implementation. Global caching is comple-

mentary to other caching strategies and has proven useful

for longer tasks with numerous re-plannings.

Subsumption caching works, but its efficiency is dependent

on the ability to create a subsumption hierarchy and thus

shows mostly in complex tasks. We believe that the idea

of subsuming requests can be exploited further. A generic

implementation is possible if modules supply which state

variables were relevant to a certain query, ideally providing

minimal reasons. For example, a putdown request that fails

because no inverse kinematics solution was found is inde-

pendent of any other objects.

The presented techniques were able to reduce planning

times to a good balance between planning and execution

time. There is also room for improvement on the planning

side. One approach lies in the fact that classical planners are

not tailored to integrated task and motion planning. In this

work, we looked at avoiding module calls. Given they make

up a major part of planning time, spending more time in

elaborate, more informed heuristics that take relaxed versions

of modules into account is worth investigating. Improved

search guidance will focus on calls relevant to the goal. The

techniques presented in this paper are complementary to such

Task Objects Total Planning Time [s] Max Single Plan Time [s] Planner Calls Execution Time [s] Actions
Eager Lazy Eager Lazy

1 1 76.7 41.8 72.0 37.3 2 497.2 24
2 1 66.0 43.0 61.2 39.0 2 303.4 21
3 2 57.4 42.3 47.9 32.2 3 807.8 38
4 2 106.2 71.2 73.2 42.2 4 631.8 40
5 3 221.0 158.1 112.6 76.6 4 823.8 46
6 3 124.0 99.8 42.4 27.7 18 1630.9 94
7 4 289.6 220.8 203.1 153.5 10 1226.1 63
8 4 120.9 99.8 57.8 56.4 4 1019.3 55
9 5 686.2 505.3 263.7 220.1 6 1651.7 82
10 5 350.2 255.5 281.3 211.0 3 1195.0 56

TABLE I

OVERVIEW OF THE SYSTEM PERFORMANCE UNDER EAGER AND LAZY EVALUATION.

Task Number of No Caching Full State Full State (G) Partial State Partial State (G) Subsumption Subsumption (G)
Requests Time [s] Misses Time [s] Misses Time [s] Misses Time [s] Misses Time [s] Misses Time [s] Misses Time [s]

1 98 60.5 60 36.7 60 36.7 8 4.5 8 4.5 8 4.5 8 4.5
2 140 101.0 70 49.7 70 49.7 5 3.0 5 3.0 5 3.0 5 3.0
3 347 170.4 224 110.5 224 110.5 22 11.3 17 8.9 20 10.5 15 8.0
4 1124 898.7 402 318.9 402 318.9 37 27.0 32 23.0 37 27.0 32 23.0
5 7488 4701.7 1954 1184.1 1954 1184.1 70 46.4 62 42.2 68 45.3 62 42.2
6 2559 1422.1 1568 862.4 1568 862.4 200 121.7 68 46.8 178 111.7 95 71.1
7 5234 3411.2 1880 1285.5 1848 1259.7 175 140.2 90 69.1 159 126.6 74 55.5
8 1167 790.9 540 358.3 540 358.3 66 40.3 66 40.3 66 40.3 66 40.3
9 11823 15907.6 3980 5301.0 3980 5301.0 247 472.1 228 413.1 203 393.7 190 340.9
10 6900 4230.3 1844 1112.8 1844 1112.8 63 38.8 63 38.8 62 37.6 62 37.6

TABLE II

COMPARISON OF THE DIFFERENT CACHING METHODS FOR THE PUTDOWN MODULE. METHODS ANNOTATED WITH (G) ALSO USED GLOBAL CACHING.

improvements and thus are an efficient part of any integrated

task and motion planning system.

REFERENCES

[1] S. Cambon, R. Alami, and F. Gravot, “A hybrid approach to intricate
motion, manipulation and task planning,” Int. Journal of Robotics

Research, vol. 28, no. 1, pp. 104–126, 2009.

[2] L. Kaelbling and T. Lozano-Perez, “Integrated task and motion plan-
ning in belief space,” Int. Journal of Robotics Research, 2013.

[3] J. Wolfe, B. Marthi, and S. J. Russell, “Combined task and motion
planning for mobile manipulation,” in Int. Conference on Automated

Planning and Scheduling (ICAPS), 2010.

[4] A. Gaschler, R. P. A. Petrick, T. Kröger, A. Knoll, and O. Khatib,
“Robot task planning with contingencies for run-time sensing,” in
Workshop on Combining Task and Motion Planning at ICRA, 2013.

[5] L. Kaelbling and T. Lozano-Perez, “Hierarchical task and motion
planning in the now,” in IEEE Conference on Robotics and Automation

(ICRA), 2011.

[6] B. Nebel, C. Dornhege, and A. Hertle, “How much does a household
robot need to know in order to tidy up your home?” in AAAI Workshop

on Intelligent Robotic Systems, 2013.

[7] C. Dornhege and A. Hertle, “Integrated symbolic planning in the
tidyup-robot project,” in AAAI Spring Symposium - Designing Intelli-

gent Robots: Reintegrating AI II, 2013.

[8] C. Dornhege, P. Eyerich, T. Keller, S. Trüg, M. Brenner, and B. Nebel,
“Semantic attachments for domain-independent planning systems,”
in Int. Conference on Automated Planning and Scheduling (ICAPS).
AAAI Press, September 2009, pp. 114–121.

[9] M. Beetz, T. Arbuckle, M. Bennewitz, W. Burgard, A. Cremers,
D. Fox, H. Grosskreutz, D. Haehnel, and D. Schulz, “Integrated plan-
based control of autonomous service robots in human environments,”
IEEE Intelligent Systems, vol. 16, 2001.

[10] I. Kresse and M. Beetz, “Movement-aware action control – integrating
symbolic and control-theoretic action execution,” in IEEE Conference

on Robotics and Automation (ICRA), 2012.
[11] S. Srivastava, L. Riano, S. Russell, and P. Abbeel, “Using classical

planners for tasks with continuous operators in robotics,” in ICAPS

Workshop on Planning and Robotics (PlanRob), 2013.
[12] P. Eyerich, M. Brenner, and B. Nebel, “On the complexity of planning

operator subsumption,” in Int. Conference on Principles of Knowledge

Representation and Reasoning (KR 2008), 2008, pp. 518–527.
[13] S. Richter and M. Helmert, “Preferred operators and deferred evalua-

tion in satisficing planning,” in Int. Conference on Automated Planning
and Scheduling (ICAPS), 2009, pp. 273–280.

[14] M. Helmert, “The fast downward planning system,” Journal of Artifi-

cial Intelligence Research, vol. 26, pp. 191–246, 2006.
[15] ——, “Concise finite-domain representations for PDDL planning

tasks,” Artificial Intelligence, vol. 173, pp. 503–535, 2009.
[16] M. Fox and D. Long, “PDDL2.1: an extension to PDDL for ex-

pressing temporal planning domains,” Journal of Artificial Intelligence
Research (JAIR), vol. 20, no. 1, pp. 61–124, 2003.

[17] M. Likhachev, G. J. Gordon, and S. Thrun, “ARA*: Anytime A*
with provable bounds on sub-optimality,” in Advances in Neural

Information Processing Systems 16. MIT Press, 2004.
[18] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Bur-

gard, “OctoMap: An efficient probabilistic 3D mapping framework
based on octrees,” Autonomous Robots, 2013.

[19] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Ng, “ROS: an open-source robot operating
system,” in ICRA Workshop on Open Source Software, 2009.

[20] J. Hess, D. Tipaldi, and W. Burgard, “Null space optimization for
effective coverage of 3d surfaces using redundant manipulators,” in
Int. Conference on Intelligent Robots and Systems (IROS), 2012.

