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Abstract— Autonomous mobile manipulation in every day
environments is a key feature for next generation service robots.
However, the diversity of problems that need to be solved by
a robot is vast. Detailed knowledge about the environment,
surrounding objects, and handling instructions is required.
In this paper we combine object-centered hybrid reasoning
with reachability analysis for autonomous spatial reasoning
on mobile manipulation tasks. Object knowledge is used to
distinguish the right place and time to move a mobile platform
in order to solve a given task. The methods are evaluated in
an experiment with the humanoid robot Rollin’ Justin.

I. INTRODUCTION

Hybrid reasoning, by the means of a combination of sym-
bolic and geometric planning, is mandatory for autonomous
solving of manipulation tasks. By only giving a high-level
command, a robot has to reason about the symbolic order of
the actions to fulfill (e.g. picking a mug before placing it in
a cupboard with the available resources), but also about the
geometric execution (how to pick and place in detail with
the specific capabilities of the robot).

Several works have been done on symbolic and geometric
reasoning to solve manipulation tasks in general. Dornhege
et al. ground symbolic actions based on the Planning Domain
Definition Language (PDDL) by adding semantic attachment
modules [1]. Wolfe et al. directly integrate external geometric
solvers into a symbolic Hierarchical Task Network (HTN)
planner [2]. Karlsson er al. [3] invoke geometric actions
during the symbolic planning phase and propose geometric
backtracking in case of failure. Kaelbling et al. focus their
work on symbolic and geometric planning under uncertainty
for mobile manipulation [4]. However, when mobility is
required to solve a task it is necessary to additionally reason
about two questions:

e Where should a mobile robot move to fulfill a task?
« When does a mobile robot has to move its mobile base?

The topology (“where”) of a manipulation scenario is
crucial for the success of a task. Depending on the position of
a robot, objects are possibly out of reach. Manipulating such
an object is thus unfeasible. Zacharias et al. propose to use
capability maps [5] to represent the workspace for robotic
manipulators. Capability maps can be used to position the
mobile base best possible to manipulate objects or follow
workspace trajectories [6]. Stulp er al. use capability maps
to guide the positioning of a mobile base to so-called Action-
Related Places to manipulate objects under uncertainty w. . t.
the performed action [7]. Semantic maps, as generated from
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Fig. 1.

A mobile pick-and-place task with the humanoid robot Rollin’
Justin. Prior object knowledge is used to determine the optimal position to
place the mobile base of the robot.

sensor input by Niichter et al. [8] are used by Galindo
et al. in combination with symbolic planning to command
mobile robots to reach a desired goal location [9]. The
second question for the chronology of mobile manipulation
("when”) is often ignored and simply solved by scheduling
additional operations that navigate to a certain goal. In
this paper we want to address both questions by directly
integrating a spatial reasoning step into the hybrid planning
procedure.

The so far listed methods disregard an appropriate knowl-
edge representation to store the information needed to solve
the wide variety of household tasks. Tenorth er al. [10] rely
on a web database to exchange knowledge about actions,
environments and objects between different robots. A related
approach tries to parse human readable knowledge bases in
the Internet to solve manipulation tasks [11]. An interesting
approach is to arrange the required knowledge around the
object itself. Kallmann et al. [12] store articulation trajecto-
ries within the objects while Levison [13] classifies objects
by functionality and augments the symbolic domain with
hierarchical action properties.

In our previous work we introduced a modular architecture
to solve manipulation tasks from the object point of view
rather than from the robot point of view. We argued that all



information needed to solve manipulation tasks can be stored
within the descriptions of the involved objects [14]. A two
step hybrid reasoning approach based on object knowledge
is used to solve manipulation tasks. Our contribution in this
paper is the extension of this architecture towards mobile
manipulation. Object knowledge is used to distinguish the
optimal positioning of a robotic mobile base w.r.t. the
actions to be performed. The decision to move a mobile
base or not is directly integrated into the hybrid planning
procedure.

The paper is organized as follows: After an introduction
to our preliminary work on hybrid reasoning in Sec. II, we
extend the architecture towards mobile manipulation in Sec.
III. The approach is validated in an experiment in Sec. IV.
An extended discussion on the concept is provided in Sec.
V.

II. PRELIMINARY WORK

Autonomous solving of everyday manipulations tasks
relies on various abilities. A robot needs to localize the
relevant objects in its environment, it has to plan feasible
collision-free motions to manipulate them, and it has to
navigate through unstructured human environments. Even
though different robots have different implementations for
these modules, the basic procedure to solve a certain task
stays the same. For this reason it is beneficial to develop
manipulation tasks in a reusable way. A robot-independent
modular architecture to solve manipulation tasks is therefore
essential. Focusing on special robot abilities to solve a task,
on the contrary, is not desirable.

In our previous work [14] we proposed to categorize
objects in a hierarchical structure according to their func-
tionality and additionally store process models which define
arbitrary manipulation instructions. We argued that all in-
formation needed to solve manipulation tasks can be stored
within the descriptions of the involved objects. A hybrid
planning approach is used to solve the given tasks on the
symbolic as well as on the geometric level. The underlying
architecture is reviewed in this section.

Our approach is based on the integration of object knowl-
edge within the hybrid reasoning procedure. An object
storage provides knowledge for all available objects. The
objects are categorized by functionality and hierarchically
arranged in the object-oriented paradigm. Objects of the
same object class can be manipulated the same way since
they share the same process models to handle them. However,
the object oriented paradigm allows the consideration of
their specific properties such as size and shape. The actual
belief state for the environment of the robot is instantiated
in the world representation. Objects as described in the
object storage are handled here with specific symbolic and
geometric properties.

The main component for solving manipulations tasks
within the object context is formed by the so-called ac-
tion templates. They can be described in two segments
as illustrated in the center of Fig. 2. The first segment
provides symbolic action definitions for symbolic planning.
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Fig. 2. Object knowledge is used to parameterize the hybrid reasoning
procedure on the symbolic and geometric level. Action templates are
interpreted in a two step approach. First, the symbolic action template header
is parsed to solve a given task with symbolic reasoning. Second, the resulting
symbolic transition is grounded based on the geometric process model, given
by the second part of the action template. Geometric backtracking is inherent
in this step. Finally, the feasible solution is executed on the real robot.

The second segment is executed at run-time. It defines the
symbol grounding to the geometric level by the use of object
knowledge. The procedure for manipulating objects by the
use of action templates as illustrated in Fig. 2 is described
as follows.

The first step to solve a manipulation task is the symbolic
reasoning. The symbolic domain is generated out of the
current belief state stored in the world representation. The
action templates define symbolic action definitions with
symbolic preconditions and effects. Additionally every object
type provides symbolic predicates. With this information
a symbolic planner is able to generate feasible symbolic
transitions leading to a user-specified goal state.

In a follow-up step, the second part of the action tem-
plates is revisited to solve the task on the geometric level.
Geometric simulation modules are therefore integrated to
ground the symbolic transition. Object knowledge is heavily
used to describe the process models for the different actions.
Among others, CAD data, grasp sets and regions of interest
(e.g. table planes) are used to describe simple pick-and-place
actions. Tool frames and task trajectories are used to describe
more complex actions such as tool handling. If one action is
successfully simulated, the next actions are performed until
the goal state is reached. Should one step of the geometric
simulation fail, the action template is reviewed for geomet-
ric alternatives. After all alternatives have been attempted
without success, geometric backtracking is initiated to find a
previously scheduled action with remaining alternatives and
the procedure starts over. If the symbolic transition is not
feasible with any of the given geometric alternatives, the
complete procedure is re-initialized with a different symbolic
transition. Fig. 3 illustrates the backtracking mechanism in a
pick-and-place example where a milk box has to be placed
in a trash can.
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Fig. 3. The backtracking mechanism illustrated in a pick-and-place
example. A side grasp is not suitable to place the milk box in the trash
can due to collisions (a). After backtracking to the previous pick action, a
top grasp is chosen to pick the milk box so that putting it down becomes
feasible (b).

Our previous work showed that complex manipulation
tasks such as using mechanisms or bi-manual tools can
be solved with this architecture. Manipulating articulated
objects with two arms was shown in an example where
Justin had to use a hedge shear to cut a ribbon [14]. The
object-oriented paradigm is capable of polymorphism, so that
requesting the same action from several objects results in
different instruction sets. For example serving ketchup with
a bottle or a dispenser has the same effects to the world, but
the way of handling the objects is very different.

The process model for the object handling as well as the
backtracking mechanism are directly mapped to the action
templates. Therefore, the programmer gets a different view
on the problem which results in a different way of solving
the task. Rather to think about the capabilities of a robot, the
functionality of the objects gets into focus.

III. EXTENSION TOWARDS MOBILE MANIPULATION

Mobility is crucial for service robots in human households.
Objects in human environments are widely spread over
different rooms and different storage positions. Even simple
fetch-and-carry tasks require a robot to navigate from one
object to another. The main issue to move towards an object
is because it is out of the reach of the robot. However, finding
a suitable base position to manipulate a certain object is
not trivial. The limiting factors are collisions with obstacles,
limitations of the end effector kinematics and the reachability
of the robotic manipulator.

For now, only a motion planner for robotic manipulators
was used as geometric simulation in the proposed architec-
ture. One could simply extend the motion planner by the
Degrees of Freedom of a mobile base to solve mobile ma-
nipulation tasks as shown by Schulman et al. [15]. However,
if the goal position to manipulate an object is ambiguous, as
it is for tasks like placing a mug on a shelf, this approach can
not be applied directly. Therefore, we take advantage of pre-
calculated reachability information to find the most flexible
base position in terms of reachability for the involved objects.

Zacharias et al. use so-called capability maps [5] to
represent the reachability for robotic manipulators. It was
shown that reaching for objects [7] as well as following
workspace trajectories [6] can be guided by the use of
this representation. We expand these approaches to cover
whole Regions of Interest (ROI) in the workspace of the
manipulator. The regions are gathered out of the object
database and vary depending on the type of object. Small
objects a robot can manipulate with one manipulator (e.g.
mugs and bottles) form a ROI based on the dimension of
the object bounding box. Bigger objects define a region of
interest according to their purpose. For tables and shelves
the regions of interest are defined by the dimension of the
storage elements.

We optimize the mean reachability value r.; in these
regions by adapting the base position p,,. and the configu-
ration of the torso g,o.0» Where = (pl., ql )7

Tmax = argmax 7Ty () (D

By maximizing the reachability within the region of
interest, an optimal solution vector @, is obtained. The
initial position for optimizing the base is set to the object
position. The joint values for the initial torso configuration
are set to be upright. The optimal intersection between the
capability map of the right manipulator and the ROI of the
task related objects is shown in Fig. 4. The colors indicate
the reachability r for the discrete voxels. Red voxels are
unreachable (r = 0.0) and blue voxels are fully reachable
(r = 1.0). The maximum reachability rp,x for the manip-
ulators of the humanoid robot Rollin’ Justin is 0.833. The
inverse reachability approach by Vahrenkamp et al. [16] to
find suitable base positions for a particular 6D target position
is comparable to our method. However, it is hardly applicable
to optimize the overall reachability within an arbitrary target
region.

An A* planner [17] is used to navigate to the closest
possible collision-free target position as described in algo-
rithm IIL.1. Depending on the object the appropriate ROI is
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Fig. 4. Optimal collision-free intersection of the capability map for the
right manipulator and the ROI of a ketchup bottle on the left (,; = 0.66),
and the optimal intersection for the ROI of a table on the right (r;o; = 0.32).



selected. The A* planner searches for the shortest path to
reach this goal. However, the robot cannot reach the exact
goal position since it is blocked by the target object itself.
The map is thus initially empty and the planning algorithm
is used to explore the map. Therefore, the path has to be
checked for collisions afterwards. In case of collision the map
position gets marked as occupied. If the robot is yet close
enough to reach the object (r,; > 0.1), the final position is
optimized as shown in (1). The procedure is repeated until
a feasible path is found or the complete map is explored
without success.

Algorithm III.1: NAVIGATETOOBJECT(object)

map < CREATEEMPTYMAP()
reached < False
rot <— object.roi

while reached # True
path < ASTARFINDPATH(map, ro7)
if CHECKCOLLISION(path) = False
then {Teached — True
UPDATEMAP(map)
else ¢ if CHECKREACHABILITY(r0i) > 0.1
then {reached +— True

do

OPTIMIZEREACHABILITY (107)

However, the solution so far provides only the information
about the position “where” a robot should move. It is not
yet specified "when” the platform should move or when
that is not efficient. Depending on the initial reachability
it is maybe better to stay still since the object is anyway
in reach of the manipulator. Moving the base could corrupt
the environmental belief state due to uncertainties in the
odometry. Furthermore, navigating with a mobile base is
highly time-consumptive due to planning and execution of
the motion and necessary world state updates. For both
reasons a mobile base should thus only be used when it is
really necessary to solve a task.

A simple way to integrate mobility on the symbolic
reasoning level is to augment the PDDL action definitions
by additional preconditions for reachability validation. The
PDDL description for the generic pick action would hereby
look as follows:

raction _object.pick
:parameters (2?0 - _object ?t - _tray ?m - _manipulator)

:precondition (and (free ?m)
(on 2?0 ?t)
(reachable 2?0 ?m))

teffect (and (bound ?0 ?m)

(not (free ?m))
(not (on 20 ?t)))

The additional (reachable ?o ?m) predicate in the
precondition section will force a robot to navigate to a certain
object in every symbolic step. However, there is no geometric
feedback in pure symbolic planning to reason about this
decision. Additionally the generality of the symbolic domain
decreases since the extra precondition has to be considered

for every action. Using hybrid reasoning, this decision can
be postponed to the geometric reasoning step. Instead of
directly executing an action template, the reachability for the
action-related object is first validated w.r.t. the object ROL.
The NavigateToObject function as described in algorithm
III.1 is executed when the reachability is beneath a minimal
reachability threshold of 7y, = Tmax * 0.5, which means that
the object must be at least 50% reachable by the robotic
manipulator. After the object is within reach, the action
template is parsed and executed. No symbolic overhead
is generated this way and a seamless integration of the
navigation module within the hybrid reasoning procedure is
thereby achieved.

IV. EVALUATION

The evaluation of the proposed methods is done by
examining the capabilities of the overall architecture in
an experiment for mobile manipulation. The experiment is
carried out in simulation with the mobile humanoid robot
Rollin’ Justin of DLR [18]. The mobile base of the robot
allows for omnidirectional motions. The expandable torso
allows to reach for objects at different heights. Both abilities
are exploited to optimize the reachability of the manipulators
w.r.t. the provided object knowledge. The sequence of the
experiment is illustrated in Fig. 5.

The task to be solved is a pick-and-place scenario, in
which two mugs have to be placed on a shelf. The objects
are too far away from each other to reach them at the same
time. The robot is forced to use the mobile base to fulfill
the task successfully. The first step is to approach the mugs
from distance, so that they can be picked up. The second
step is to transport them to the shelf and place them down.
The position to put the mugs down is arbitrary. It is defined
by the ROI of the shelf, respectively the storage plane. The
symbolic transition given by the symbolic planner looks as
follows:

_object.pick mugl tablel right_arm,
_object.place mugl shelf,

_object.pick mug2 table2 right_arm,
_object.place mug2 shelf

The reasoning about the navigation is done inherently and
does not appear in the symbolic transition. As seen in Fig. 5
the object-specific regions of interest are used to determine
the optimal positioning of the mobile base w.r.t. the right
manipulator, while collisions with the environment are taken
into account. The A* planner is used to determine the base
trajectory from one point to another. The final base position
and torso configuration are optimized according to (1).

The experiment shows that mobile pick-and-place tasks
are solvable with the proposed architecture. The robot au-
tonomously decided to navigate in between the single actions
by only using the provided object knowledge. The placement
of the mobile base as well as the configuration of the torso
was chosen optimal, w.r.t. the executed actions and the
involved objects. Experiments with more realistic scenarios
and further evaluation on the real robot are scheduled for
future work.
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Fig. 5.

The two mugs have to be carried to the shelf. The robot has to navigate towards the mugs, pick them up, and place them on the shelf. The

symbolic transition does not include the navigation. The need for moving the mobile base is autonomously decided w.r.t. the reachability as provided
by the capability map. The A* path is illustrated as colored blocks on the floor where red blocks are occupied, green ones are free, and the blue blocks

indicate the final path.

V. DISCUSSION

The proposed concept is expressive enough to easily de-
scribe various manipulation tasks. However, some drawbacks
have been discovered while developing robotic manipulation
scenarios. The advantages and limitations of the architecture
are discussed within this section.

We found that the main benefit of our approach is the
way of programming applications. Since the focus is on the
object and the related action rather than on a special robot,
different aspects of the problem are examined. It is quite
natural to define workspace trajectories in the coordinates
of an object whereas end effector trajectories for a robot
manipulator are impractical to describe a task since they are
often not aligned with the tool. The same applies to regions

of interest as shown in this paper. Therefore, we enforce to
store task trajectories and tool frames within object databases
independent of specific robot capabilities.

Furthermore, the integrated backtracking mechanism
within the action templates is very intuitive. Since the
programmer already has a detailed understanding of the
process model of the action currently under development, the
next logic step is to think about possible situations leading
to failure. Having this in mind, suitable failure recovery
originates in a natural way. It is even possible to react
on previous attempts and change the behavior for the next
approach accordingly.

As shown in this paper, another advantage is the simple
adaption of the architecture to different problems. The modu-
lar geometric planning environment allows to include special



modules for any kind of problem. For the future we plan to
integrate modules for adapting low-level control behaviors,
reacting on environmental effects, as well as validation and
verification of ongoing executions.

However, there are some limitations yet. One issue with
hybrid planning is the time consuming reasoning process.
The geometric evaluation of the symbolic transition is the
bottle-neck. Due to a large number of possible alternatives,
the search for right combinations can take up to several
minutes depending on the complexity of the problem. The
backtracking as described in Sec. II could be designed
more efficient, since the alternatives are simply chosen in
a predefined order (e.g. the order of the grasps stored in the
object database). One way to overcome this issue would be to
use the alternatives based on a machine learning approach on
similar problems solved in the past. However, deciding which
problems are related to each other is not straightforward.
They may vary in symbolic aspects (e.g. placing two bottles
rather than two mugs on a tray) and geometric aspects (e.g.
the topology of the problem) but describe basically the same
situation. Suitable clustering criteria have to be defined.

During our work on mobile manipulation we recognized
an additional drawback regarding the two step hybrid rea-
soning approach. We found that the symbolic planner may
output sub-optimal solutions to solve a task due to the lack
of geometric information. Looking at the example in Sec.
1V, it is obvious that the robot could solve the task more
efficient when both manipulators are used at the same time to
transport the mugs to the shelf. One could solve this issue by
integrating geometric cost computation during the symbolic
reasoning step. A rudimentary geometric representation is
thereby sufficient, so that the resulting extra computation
time does not slow down the overall planning process too
much.

VI. SUMMARY

In this paper we presented a generic hybrid reasoning ap-
proach for mobile manipulation. Our previous work has been
extended by reasoning modules for reachability and naviga-
tion. The optimal base position as well as the corresponding
torso configuration is chosen based on the information of the
objects involved in the task and the reachability of the robotic
manipulator w.r.t. the capability map. Spatial reasoning is
used to autonomously initiate navigation towards the related
objects between the single actions. A simulated experiment
evaluates our approach.
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