
Hands-on workshop on

Stable Estimator of Dynamical Systems (SEDS)

Mohammad	Khansari*
LASA,	EPFL,	Switzerland

RoboHow Second		Joint Integration	Workshop
Bremen,	Germany

February	19th, 2013
*PhD	in	Robotics,	
MSc	in	Aerospace	Eng.

• Introduction
• State-of-the-art
• Our approach
• The challenge

• SEDS
• Theory
• Mathematical Properties
• Experiments

• The SEDS Library
• The MATLAB Package
• The ROS Package

• SEDS Extensions
• CDS
• Hitting motions
• Obstacle Avoidance

• Summary

2

 Generating robot point-to-point movements

• Optimization/Planning
(Lozano-Prez & Wesley, 1979;
Kavraki et al., 1996;
Kuffner & LaValle, 2000
Toussaint, 2009)

• Potential/Navigation functions
(Khatib, 1986;
Koditschek, 1987;
Kim & Khosla, 1992;
Feder & Slotine, 1997;
Lindemann & LaValle, 2005)

• Imitation Learning
(Andersson, 1989;
Schaal & Atkeson, 1994;
Inamura et al. 2002;
Calinon et al., 2007;
Coates et al., 2008)

• Movement Primitives
(Ijspeert et al., 2002;
Hersch et al., 2008;
Pastor et al., 2009;
Bitzer & Vijayakumar, 2009;
Kober et al., 2010)

Reactivity, Robustness Modularity, Convergence

Shaping behavior, Easy to use

3

 We seek to design an all-encompassing framework with:
• Instant Adaptation to dynamic environments (reactive)
• Inherent robustness to perturbations (robust)
• Guaranteed convergence to the target (stable)
• Ability to customize the robot motion (customizable)

4

• SEDS is based on two main pillars:
Imitation Learning & Dynamical Systems

• Imitation Learning:
 Provides an intuitive way to transmit skills

Teaching Reproduction

Learning

Model?
Learning?

5

Dynamical Systems to encode robot motions:

Streamlines of a globally asymptotically stable autonomous DS
Target

Multidimensional Kinematic Variable:
e.g. End-effector position/orientation,

joint angles

6

Challenge:

• How to obtain such a model?

• Take a probabilistic approach (imitation learning)
• Existing regression techniques do not ensure stability

How to build a globally stable DS from demonstrations?
7

• Introduction
• State-of-the-art
• Our approach
• The challenge

• SEDS
• Theory
• Mathematical Properties
• Experiments

• The SEDS Library
• The MATLAB Package
• The ROS Package

• SEDS Extensions
• CDS
• Hitting motions
• Obstacle Avoidance

• Summary

8

Dynamical Systems

Robot’s
Dynamics

Forward
Kinematics

Inverse
Kinematics

Controller

Inner Loop

N Kinesthetic
DemonstrationsSEDS

O
uter Loop

Perturbations

Learning Block

: Joint Angles
: State Variable
: Motor Commands

 Instant refinement/adaptation of the motion

* Khansari-Zadeh and Billard (2011), TRO
9

• Probabilistic estimation of DS

• SEDS uses Gaussian mixture regression

Learning parameters:

Defining value of
under stability constraints

10

• Stability conditions:

• Derived from Lyapunov stability theorem

• Based on a quadratic energy function

These stability conditions only
depend on the GMR parameters

Can be quickly verified without
performing any numerical analysis

11

Input:

Solve:

Subject to:
Minimizing discrepancy between
demonstrations and reproductions

From stability conditions

Imposed by the nature
of the mixture model

12

Input:

Solve:

Subject to: Maximizing the likelihood

13

Input:

Solve:

Subject to: Minimizing the angle between
demonstrations and estimation

14

• Integrating different motions into
one single dynamics

• Enabling the robot to switch from
one behavior to another

15

 Putting a sugar block into a cup of coffee

16

 If is SEDS, and is a real number

is also SEDS

 Consider SEDS functions:

is SEDS, provided

17

 Putting blocks into a container
• End-effector’s position control
• On 6-DoF Katana-T robot

Generalization of the task Instant adaptation to changes

18

What would happen if we go extremely far from demonstrations?

• Convergence to the target is ensured

• There is lack of information

• The robot behavior can be corrected

• Retraining is required after adding
new data points

19

20

• Introduction
• State-of-the-art
• Our approach
• The challenge

• SEDS
• Theory
• Mathematical Properties
• Experiments

• The SEDS Library
• The MATLAB Package
• The ROS Package

• SEDS Extensions
• CDS
• Hitting motions
• Obstacle Avoidance

• Summary

21

 SEDS source code is available online:
http://lasa.epfl.ch/sourcecode

SEDS Package include:
GMR_lib: Computes at a query point for a given mixture model

 SEDS_lib: Learn a stable DS model from the provided
demonstrations (depend on GMR library).

 SEDS_Cpp_lib: A ROS package to use SEDS in realtime control

 Extensions: Extensions to SEDS developed by myself or others

 Sample models: A library of 24 human handwriting motions

 Example files: showing how to use SEDS

22

Data
Collection

Data
Preprocessing

SEDS:
Initialization

SEDS:
Training

Simulation &
Validation

Storing the set of demonstrations trajectories in a SEDS
compatible format

23

 Each demonstration trajectory is represented by a matrix
where each column is a point in the trajectory:

All demonstrations are stored in a structure variable:

Final pointInitial point

Time increases

Data
Collection

Data
Preprocess.

SEDS:
Initialization

SEDS:
Training

Simulation
& Validation

24

 Functionality:
 Smoothing trajectories
 Computing the velocity
 Trimming demonstrations
 Transforming all demonstrations to the target frame

of reference
Merging all demonstrations into a single matrix

Data
Collection

Data
Preprocess.

SEDS:
Initialization

SEDS:
Training

Simulation
& Validation

Trimming
Threshold

Demonstrations
Time

Demonstrations
Trajectories

25

 Trajectory smoothing:
 It is not obligatory, but

useful!
 Uses MATLAB built-in

smooth function.

 Velocity Computation:
Fixed time step:

Variable time step:

Data
Collection

Data
Preprocess.

SEDS:
Initialization

SEDS:
Training

Simulation
& Validation

26

Demonstrations Trimming:
 Essential to get the best performance
Many useless points at the beginning and end of demos
Without trimming

 Put more priority to the initial and final parts
 This step should be done after smoothing
 To trim, the user needs to define a threshold.

Data
Collection

Data
Preprocess.

SEDS:
Initialization

SEDS:
Training

Simulation
& Validation

27

 Transformation to the target frame of reference:
 Target will be transformed to the origin, i.e.
 Significantly reduces the required computation power
Makes all demonstrations consistent!
 Do not impose any limitation

 Storing some information about the original trajectories

Data
Collection

Data
Preprocess.

SEDS:
Initialization

SEDS:
Training

Simulation
& Validation

Average initial points of all trajectories Average final points of all trajectories
28

Merging all demonstrations

Keeping the track of where each demonstration is
 Good only for visualization and debugging purposes

(otherwise, the order of datapoints are not important for SEDS)

Data
Collection

Data
Preprocess.

SEDS:
Initialization

SEDS:
Training

Simulation
& Validation

29

 GMM is accurate, but unstable!

 SEDS can be initialized from GMM

 In GMM, only one parameter should be specified:
K : Number of Gaussian functions

 How K should be chosen?
Machine learning approach: Use Bayesian Information Criterion

 Engineering approach:
Start with K=2, incrementally increase it until you’re happy

 Intuition + Engineering approach (inspired from DS analysis):
 Consider one Gaussian function per curvature
 Incrementally increase it until you’re happy

Data
Collection

Data
Preprocess.

SEDS:
Initialization

SEDS:
Training

Simulation
& Validation

30

I would start with:

K = 3 K = 2

K = 4 K = 5

Most motions can be modeled with K<10

 Big K Overfitting, Slower training time

Data
Collection

Data
Preprocess.

SEDS:
Initialization

SEDS:
Training

Simulation
& Validation

31

 Optimization using the MATLAB function fmincon

 Optimization method: Interior Point Algorithm

 Options (only important ones are described here):
 : Maximum number of iterations [def.= 1000]

This parameter is directly passed to fmincon.

 : [def.= ‘mse’]

MSE: Accurate, fast, and very robust
 Likelihood: Accurate, slightly slow, but allows to compute

the confidence value
 Direction: Useful for learning hitting motions, especial care

should be taken when using this model in simulation.

Data
Collection

Data
Preprocess.

SEDS:
Initialization

SEDS:
Training

Simulation
& Validation

32

 : Criterion to evaluate the negative
definiteness of a matrix [def.= ‘eigenvalue’]

 eigenvalue: Very robust
 principal_minor: Computationally faster (per iteration)

 [def.= 1.0e-15]

A bias term used for verification of stability conditions

 fmincon cannot handle strict inequality constraints:

Alternatively:

Data
Collection

Data
Preprocess.

SEDS:
Initialization

SEDS:
Training

Simulation
& Validation

33

 Simultaneous simulation of several motions:
 Create a matrix by concatenating all the initial points

 Simultaneous simulation of several motions:
 Use the default description

Data
Collection

Data
Preprocess.

SEDS:
Initialization

SEDS:
Training

Simulation
& Validation

The initial point of
the m-th motion

A handle to
GMR function

Initial Point(s)

Target Point

Dimensionality of
the DS

34

Simulation options (only important ones are described here):
 : Maximum number of iterations [def.=1000]

 : Integration time step [def.= 0.02]

 Not too small  Requires many iterations
 Not too big  Causes oscillation around the target

 : Stopping criterion [def.= 0.001]

 Stop the simulation if the distance to the target is less than
the tolerance.

 Note: stopping criterion should suit the unit of your data
 If meter or radian  tol = 0.001 is recommended
 If millimeter  tol = 1.0 is recommended

Data
Collection

Data
Preprocess.

SEDS:
Initialization

SEDS:
Training

Simulation
& Validation

35

 Convention: When using a SEDS model, all computations
are in the TARGET frame of reference!

 If the target is moved  The robot relative position
to the target is changed

 Plotting streamlines of DS
 Only for 2D motions

Data
Collection

Data
Preprocess.

SEDS:
Initialization

SEDS:
Training

Simulation
& Validation

The axis range
e.g. D=[-200 140 -180 180]

36

 Merging two different SEDS models:
 Just by concatenating the parameters

Data
Collection

Data
Preprocess.

SEDS:
Initialization

SEDS:
Training

Simulation
& Validation

37

When can I use SEDS?
You could use SEDS when there

is some consistency in your task,
which should be also conveyed
in your demonstrations!

 SEDS, in its usual form, considers
any overlapping across demonstrations
as noise, and thus makes a compromise
during training in order to resolve it.

Data
Collection

Data
Preprocess.

SEDS:
Initialization

SEDS:
Training

Simulation
& Validation

38

When can I use SEDS (continued)?
 SEDS is a powerful approach for episodic tasks that

requires these features altogether:
Generalization, Reactivity, and Online adaptivity

If your task does not require these features, then SEDS may
not be very useful for you!

 SEDS is a movement primitive approach: thus, first try to
think whether you could decompose your task into meaningful
simple primitives. If yes,
then learn each decomposed
primitives separately!

Data
Collection

Data
Preprocess.

SEDS:
Initialization

SEDS:
Training

Simulation
& Validation

39

• Practice #1: Getting familiar with the SEDS library
• Steps to follows:

1) Open the file ‘demo_SEDS_Learning.m’. You could find the
part that you could modify in lines 9-40

2) Run this function a few times with its current setting. You
could observe that the final model is different at each time.
Could you figure out the reason?

3) Change the number of Gaussian functions K and evaluate the
accuracy of the learned model.

4) Change the objective function from ‘mse’ to ‘likelihood’, and
re-run the program.

5) You could also try the steps above by loading the other
available models (see line #10 in the file).

40

• Practice #2: Exporting a SEDS model for use in your own
simulator/robot.

• Requirements: SEDS ROS Package
• Approach:

• Storing demonstration trajectories from your robot and save them into
separate txt files.

• Using MATLAB to train a SEDS model offline.
• Exporting the trained model into a text file.
• Loading the trained model from the text file, and use it in the realtime

thread of your (real/simulated) robot controller.

• Note:
• Currently, the SEDS ROS package only provides an estimate of the

desired control policy (e.g. an estimate of the velocity) based on the
current situation of the robot. The inclusion of the training phase in the
ROS package is a work under progress.

41

• Steps to follow in MATLAB:
1) Go to the folder ‘SEDS_Cpp_lib’, and open the file

‘SEDS_Export_Example.m’

2) Run this function to train a SEDS model based on 9 reaching
demonstrations that were collected from the 7-DoF WAM robot. If
you have your own demonstrations, change the code to load your
demonstrations, and modify the parameters according to your task.

3) After running the function, you should see a file with the name
‘mySEDSModel.txt’ in the current folder. This is the file that
includes the information about the trained model. Copy this file to
the folder of your robot/simulator executable file.

42

• Steps to follow in your code:
1) Extract SEDS and MathLib packages to your ros working space:

2) Use rosmake to build the SEDS package:

3) In the ‘manifest.xml’ file of your ros package, add the dependency
on SEDS:

4) In the main header file of your package, include the following:
#include "SEDS/GMR.h"
/*The SEDS model that you will use for motion generation.
This model should be accessible in your entire code. */
GaussianMixture mySEDS;

43

• Steps to follow in your code, continued:

5) At the initialization step of your simulator/robot, add the following
lines:

//loading the exported model from the MATLAB
//You should change the file name according to your need
bool b_SEDSLoaded = mySEDS.loadParams("mySEDSModel.txt");
if (b_SEDSLoaded)

std::cout << "The SEDS Model is loaded successfully" << std::endl;
else

std::cout << "Error: Cannot find the SEDS model!!!" << std::endl;

Note 1: Check your trained model is copied in the correct folder.
Otherwise, correct the path to the file.

44

• Steps to follow in your code, continued :

6) In the realtime loop of your robot/simulator controller, add the
following code:

MathLib::Vector x,xd,xT; //defining the required variables
x.Resize(d); //d is the dimensionality of your model
xd.Resize(d);

/* Set the input value based on how you have defined your
SEDS model. For example, x could be the position of
the robot's end-effector. */

x = ?;

xT = ?; // Set the value of the Target (for example from the vision)

x -= xT; //Transformation into the target frame of reference

mySEDS.doRegression(x,xd); // Estimating xd at x

xd.Print("xd = "); //Printing the value of xd

45

• Steps to follow in your code, continued :

7) If your model is trained based on the robot workspace variables
(e.g. end-effector position/orientation), you need to use an
inverse kinematic approach to convert xd to joint velocities for
your robot. If your model is based on joint values, then just send
the joint velocity (i.e. xd) to your controller. For further intuition
refer to the SEDS control architecture.

8) Now you could compile, and run your program. Enjoy!

46

• Introduction
• State-of-the-art
• Our approach
• The challenge

• SEDS
• Theory
• Mathematical Properties
• Experiments

• The SEDS Library
• The MATLAB Package
• The ROS Package

• SEDS Extensions
• CDS
• Hitting motions
• Obstacle Avoidance

• Summary

47

• Synchronize coordination between two DS

• An interesting application in human arm-hand coordination

• Individual DS for reach (master) and grasp (slave) dynamics,
spatially coupled.

Hand transport dynamics

Finger motion dynamics

Desired finger configuration
for coordinated motion

* Shukla and Billard (2011), RSS
48

Alpha → Speed of reaction
under perturbation

Beta → Amplitude of
reaction under perturbation

49

50

 Catching a half filled bottle of water*
- Robot is controlled at 1000Hz.
- Robot arm-hand coordination
- The bottle is tracked at 240Hz.

* Kim, Shukla, and Billard (2013), under submission
51

• Practice #3: CDS MATLAB Package

• Steps to follows:
1) Go to the folder ‘Extensions/CDSv1’

2) Open the file ‘CDS_example.m’.

3) Run this script

4) You could also follow the instructions written in the code to
modify it according to your need.

52

• Introduction
• State-of-the-art
• Our approach
• The challenge

• SEDS
• Theory
• Mathematical Properties
• Experiments

• The SEDS Library
• The MATLAB Package
• The ROS Package

• SEDS Extensions
• CDS
• Hitting motions
• Obstacle Avoidance

• Summary

53

• Reaching the target with a non-zero velocity

• We formalize robot motions as a multiplication of:
1. A target field

- Specifies the direction of motion

2. A strength factor
- Indicates the speed of movement

• Hence the final model is:
Hitting movements

A
B

* Khansari-Zadeh et. al. (2012), Advanced Robotics
Kronander et. al. (2011), IROS, winner of the JTCF best technology paper award

54

• We define the target field as:

• Estimation of the target field = estimation of a globally stable DS

 We could use any of the proposed learning approach

55

• The strength factor:
• To form the speed profile
• To change the hitting speed at the target

• It does not compromise the global convergence

• It can be learned from the same demonstrations using various
regression techniques

56

57

 Learning and Generating the Swing motion in minigolf:

58

• Introduction
• State-of-the-art
• Our approach
• The challenge

• SEDS
• Theory
• Mathematical Properties
• Experiments

• The SEDS Library
• The MATLAB Package
• The ROS Package

• SEDS Extensions
• CDS
• Hitting motions
• Obstacle Avoidance

• Summary

59

• Obstacle avoidance for the end-effector:

Modulation due to the
presence of obstacle(s)

The total effect of all obstacles
linear and angular velocity

DS Model
In obstacle’s frame

Original DS Model Modulated DS

Obstacles

* Khansari-Zadeh and Billard (2012), Autonomous Robots
60

• Modeling obstacles by a convex manifold :

• has smoothness

• increases monotonically with

61

• The modulation matrix is given by:

• Each modulation matrix is computed based on:
• The geometry of the obstacle
• The distance to the obstacle
• The speed of the obstacle
• Some user-defined properties

Modulation due
to each obstacle

62

Robot motion
generated from DS

Object 1

Object 2

Object N

Vision
Object Recognition from a
Library of known objects

K objects’ modelDS-based Obstacle
Avoidance

Commanded velocity to the robot

Is there enough
time to recognize

the object(s)? Yes

No

Fit a simple convex
envelope around the point
cloud of the obstacle(s).

63

 Placing a glass in a cluttered environment
- Robot is controlled at 500Hz.

Tracked at 100Hz

64

 Dodging a fast moving box
- Robot is controlled at 1000Hz.
- At each trial, the box reaches a maximum linear and angular

velocities of 0.6~1.5m/s and/or 40~120 deg/s.

65

The box is tracked at 240Hz

65

• Introduction
• State-of-the-art
• Our approach
• The challenge

• SEDS
• Theory
• Mathematical Properties
• Experiments

• The SEDS Library
• The MATLAB Package
• The ROS Package

• SEDS Extensions
• CDS
• Hitting motions
• Obstacle Avoidance

• Summary

66

Robotics:
• The first imitation learning approach that ensures stability of

nonlinear multi-dimensional autonomous DS.

• An all-encompassing framework to generate
discrete motions with a number of interesting features:

Machine Learning:
• Providing a statistical-based method to estimate globally

stable DS from a set of demonstrations.

 Easy to program
 Global convergence
 Instant adaptation
 Modular

 Time-independent
 Inherent robustness
 Various applications
 Multi-dimensional

67

• Modeling DS motions with kinematic variables
• Robot dynamics is not explicitly considered
• May introduce some inaccuracies

• Composition and superposition of DS motions
• Is useful for generating more complex motions

68

Thanks for your attention

Thanks to the EU Project (FP7-ICT-248311) for supporting my research

Thanks Aude
for her advice
and support

Thanks Klas
for his

collaboration

Thanks Eric
for the

RobotToolKit

Thanks Martin
for the

vision system

