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 Generating robot point-to-point movements

• Optimization/Planning
(Lozano-Prez & Wesley, 1979;
Kavraki et al., 1996;
Kuffner & LaValle, 2000
Toussaint, 2009)

• Potential/Navigation functions
(Khatib, 1986;
Koditschek, 1987;
Kim & Khosla, 1992;
Feder & Slotine, 1997;
Lindemann & LaValle, 2005)

• Imitation Learning
(Andersson, 1989;
Schaal & Atkeson, 1994;
Inamura et al. 2002;
Calinon et al., 2007;
Coates et al., 2008)

• Movement Primitives
(Ijspeert et al., 2002;
Hersch et al., 2008;
Pastor et al., 2009;
Bitzer & Vijayakumar, 2009;
Kober et al., 2010)

Reactivity, Robustness Modularity, Convergence

Shaping behavior, Easy to use
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 We seek to design an all-encompassing framework with:
• Instant Adaptation to dynamic environments (reactive)
• Inherent robustness to perturbations (robust)
• Guaranteed convergence to the target (stable)
• Ability to customize the robot motion (customizable)
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• SEDS is based on two main pillars: 
Imitation Learning & Dynamical Systems

• Imitation Learning:
 Provides an intuitive way to transmit skills

Teaching Reproduction

Learning

Model?
Learning? 
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Dynamical Systems to encode robot motions:

Streamlines of a globally asymptotically stable autonomous DS
Target

Multidimensional Kinematic Variable: 
e.g. End-effector position/orientation,

joint angles
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Challenge:

• How to obtain such a model?

• Take a probabilistic approach (imitation learning)
• Existing regression techniques do not ensure stability

How to build a globally stable DS from demonstrations?
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Dynamical Systems

Robot’s 
Dynamics

Forward 
Kinematics

Inverse 
Kinematics

Controller

Inner Loop    

N Kinesthetic 
DemonstrationsSEDS

O
uter Loop

Perturbations

Learning Block

: Joint Angles
:  State Variable
:  Motor Commands

 Instant refinement/adaptation of the motion

* Khansari-Zadeh and Billard (2011), TRO
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• Probabilistic estimation of DS

• SEDS uses Gaussian mixture regression

Learning parameters:

Defining value of
under stability constraints
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• Stability conditions:

• Derived from Lyapunov stability theorem

• Based on a quadratic energy function

These stability conditions only 
depend on the GMR parameters

Can be quickly verified without
performing any numerical analysis
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Input:

Solve:

Subject to:
Minimizing discrepancy between 
demonstrations and reproductions

From stability conditions

Imposed by the nature 
of the mixture model
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Input:

Solve:

Subject to: Maximizing the likelihood 
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Input:

Solve:

Subject to: Minimizing the angle between
demonstrations and estimation
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• Integrating different motions into
one single dynamics

• Enabling the robot to switch from
one behavior to another
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 Putting a sugar block into a cup of coffee
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 If               is SEDS, and          is a real number

is also SEDS

 Consider    SEDS functions:

is SEDS, provided 
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 Putting blocks into a container
• End-effector’s position control
• On 6-DoF Katana-T robot

Generalization of the task Instant adaptation to changes
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What would happen if we go extremely far from demonstrations?

• Convergence to the target is ensured

• There is lack of information

• The robot behavior can be corrected

• Retraining is required after adding
new data points
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 SEDS source code is available online:
http://lasa.epfl.ch/sourcecode

SEDS Package include:
GMR_lib:   Computes   at a query point    for a given mixture model

 SEDS_lib: Learn a stable DS model from the provided 
demonstrations (depend on GMR library).

 SEDS_Cpp_lib: A ROS package to use SEDS in realtime control

 Extensions:        Extensions to SEDS developed by myself or others

 Sample models: A library of 24 human handwriting motions

 Example files:   showing how to use SEDS
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Data 
Collection

Data 
Preprocessing

SEDS: 
Initialization

SEDS: 
Training

Simulation & 
Validation

Storing the set of demonstrations trajectories in a SEDS 
compatible format

23



 Each demonstration trajectory is represented by a matrix
where each column is a point in the trajectory:

All demonstrations are stored in a structure variable:

Final pointInitial point

Time increases

Data 
Collection

Data 
Preprocess.

SEDS: 
Initialization

SEDS: 
Training

Simulation 
& Validation
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 Functionality:
 Smoothing trajectories
 Computing the velocity
 Trimming demonstrations
 Transforming all demonstrations to the target frame

of reference
Merging all demonstrations into a single matrix

Data 
Collection

Data 
Preprocess.

SEDS: 
Initialization

SEDS: 
Training

Simulation 
& Validation

Trimming
Threshold

Demonstrations
Time

Demonstrations
Trajectories
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 Trajectory smoothing:
 It is not obligatory, but

useful!
 Uses MATLAB built-in 

smooth function.

 Velocity Computation:
Fixed time step:

Variable time step:

Data 
Collection

Data 
Preprocess.

SEDS: 
Initialization

SEDS: 
Training

Simulation 
& Validation

26



Demonstrations Trimming:
 Essential to get the best performance
Many useless points at the beginning and end of demos
Without trimming 

 Put more priority to the initial and final parts
 This step should be done after smoothing
 To trim, the user needs to define a threshold.

Data 
Collection

Data 
Preprocess.

SEDS: 
Initialization

SEDS: 
Training

Simulation 
& Validation
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 Transformation to the target frame of reference:
 Target will be transformed to the origin, i.e. 
 Significantly reduces the required computation power
Makes all demonstrations consistent!
 Do not impose any limitation

 Storing some information about the original trajectories

Data 
Collection

Data 
Preprocess.

SEDS: 
Initialization

SEDS: 
Training

Simulation 
& Validation

Average initial points of all trajectories Average final points of all trajectories
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Merging all demonstrations

Keeping the track of where each demonstration is
 Good only for visualization and debugging purposes

(otherwise, the order of datapoints are not important for SEDS)

Data 
Collection

Data 
Preprocess.

SEDS: 
Initialization

SEDS: 
Training

Simulation 
& Validation
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 GMM is accurate, but unstable!

 SEDS can be initialized from GMM

 In GMM, only one parameter should be specified:
K : Number of Gaussian functions

 How K should be chosen?
Machine learning approach: Use Bayesian Information Criterion

 Engineering approach: 
Start with K=2, incrementally increase it until you’re happy

 Intuition + Engineering approach (inspired from DS analysis): 
 Consider one Gaussian function per curvature
 Incrementally increase it until you’re happy

Data 
Collection

Data 
Preprocess.

SEDS: 
Initialization

SEDS: 
Training

Simulation 
& Validation
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I would start with:

K = 3 K = 2

K = 4 K = 5

Most motions can be modeled with K<10

 Big K Overfitting, Slower training time

Data 
Collection

Data 
Preprocess.

SEDS: 
Initialization

SEDS: 
Training

Simulation 
& Validation
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 Optimization using the MATLAB function fmincon

 Optimization method: Interior Point Algorithm

 Options (only important ones are described here):
 : Maximum number of iterations [def.= 1000]

This parameter is directly passed to fmincon.

 : [def.= ‘mse’]

MSE: Accurate, fast, and very robust
 Likelihood: Accurate, slightly slow, but allows to compute

the confidence value
 Direction: Useful for learning hitting motions, especial care

should be taken when using this model in simulation.

Data 
Collection

Data 
Preprocess.

SEDS: 
Initialization

SEDS: 
Training

Simulation 
& Validation
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 : Criterion to evaluate the negative
definiteness of a matrix [def.= ‘eigenvalue’]

 eigenvalue: Very robust
 principal_minor: Computationally faster (per iteration)

 [def.= 1.0e-15]

A bias term used for verification of stability conditions

 fmincon cannot handle strict inequality constraints:

Alternatively:

Data 
Collection

Data 
Preprocess.

SEDS: 
Initialization

SEDS: 
Training

Simulation 
& Validation
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 Simultaneous simulation of several motions:
 Create a matrix by concatenating all the initial points

 Simultaneous simulation of several motions:
 Use the default description

Data 
Collection

Data 
Preprocess.

SEDS: 
Initialization

SEDS: 
Training

Simulation 
& Validation

The initial point of 
the m-th motion

A handle to 
GMR function

Initial Point(s)

Target Point

Dimensionality of
the DS
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Simulation options (only important ones are described here):
 : Maximum number of iterations [def.=1000]

 : Integration time step [def.= 0.02]

 Not too small  Requires many iterations
 Not too big      Causes oscillation around the target

 : Stopping criterion [def.= 0.001]

 Stop the simulation if the distance to the target is less than
the tolerance.

 Note: stopping criterion should suit the unit of your data
 If meter or radian  tol = 0.001 is recommended
 If millimeter  tol = 1.0 is recommended

Data 
Collection

Data 
Preprocess.

SEDS: 
Initialization

SEDS: 
Training

Simulation 
& Validation

35



 Convention: When using a SEDS model, all computations 
are in the TARGET frame of reference!

 If the target is moved  The robot relative position
to the target is changed

 Plotting streamlines of DS
 Only for 2D motions

Data 
Collection

Data 
Preprocess.

SEDS: 
Initialization

SEDS: 
Training

Simulation 
& Validation

The axis range 
e.g. D=[-200   140   -180   180]
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 Merging two different SEDS models:
 Just by concatenating the parameters

Data 
Collection

Data 
Preprocess.

SEDS: 
Initialization

SEDS: 
Training

Simulation 
& Validation
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When can I use SEDS?
You could use SEDS when there 

is some consistency in your task, 
which should be also conveyed 
in your demonstrations!

 SEDS, in its usual form, considers 
any overlapping across demonstrations
as noise, and thus makes a compromise
during training in order to resolve it.

Data 
Collection

Data 
Preprocess.

SEDS: 
Initialization

SEDS: 
Training

Simulation 
& Validation
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When can I use SEDS (continued)?
 SEDS is a powerful approach for episodic tasks that 

requires these features altogether:
Generalization, Reactivity, and Online adaptivity

If your task does not require these features, then SEDS may
not be very useful for you!

 SEDS is a movement primitive approach: thus, first try to 
think whether you could decompose your task into meaningful
simple primitives. If yes, 
then learn each decomposed 
primitives separately!

Data 
Collection

Data 
Preprocess.

SEDS: 
Initialization

SEDS: 
Training

Simulation 
& Validation
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• Practice #1: Getting familiar with the SEDS library
• Steps to follows:

1) Open the file ‘demo_SEDS_Learning.m’. You could find the
part that you could modify in lines 9-40

2) Run this function a few times with its current setting. You
could observe that the final model is different at each time.
Could you figure out the reason?

3) Change the number of Gaussian functions K and evaluate the
accuracy of the learned model.

4) Change the objective function from ‘mse’ to ‘likelihood’, and
re-run the program.

5) You could also try the steps above by loading the other
available models (see line #10 in the file).
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• Practice #2: Exporting a SEDS model for use in your own
simulator/robot.

• Requirements: SEDS ROS Package
• Approach:

• Storing demonstration trajectories from your robot and save them into
separate txt files.

• Using MATLAB to train a SEDS model offline.
• Exporting the trained model into a text file.
• Loading the trained model from the text file, and use it in the realtime

thread of your (real/simulated) robot controller.

• Note:
• Currently, the SEDS ROS package only provides an estimate of the

desired control policy (e.g. an estimate of the velocity) based on the
current situation of the robot. The inclusion of the training phase in the
ROS package is a work under progress.
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• Steps to follow in MATLAB:
1) Go to the folder ‘SEDS_Cpp_lib’, and open the file

‘SEDS_Export_Example.m’

2) Run this function to train a SEDS model based on 9 reaching
demonstrations that were collected from the 7-DoF WAM robot. If
you have your own demonstrations, change the code to load your
demonstrations, and modify the parameters according to your task.

3) After running the function, you should see a file with the name
‘mySEDSModel.txt’ in the current folder. This is the file that
includes the information about the trained model. Copy this file to
the folder of your robot/simulator executable file.
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• Steps to follow in your code:
1) Extract SEDS and MathLib packages to your ros working space:

2) Use rosmake to build the SEDS package:

3) In the ‘manifest.xml’ file of your ros package, add the dependency
on SEDS:

4) In the main header file of your package, include the following:
#include "SEDS/GMR.h"
/*The SEDS model that you will use for motion generation. 
This model should be accessible in your entire code. */
GaussianMixture mySEDS; 
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• Steps to follow in your code, continued:

5) At the initialization step of your simulator/robot, add the following
lines:

//loading the exported model from the MATLAB
//You should change the file name according to your need
bool b_SEDSLoaded = mySEDS.loadParams("mySEDSModel.txt");
if  (b_SEDSLoaded)

std::cout << "The SEDS Model is loaded successfully" << std::endl;
else

std::cout << "Error: Cannot find the SEDS model!!!" << std::endl;

Note 1: Check your trained model is copied in the correct folder.
Otherwise, correct the path to the file.
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• Steps to follow in your code, continued :

6) In the realtime loop of your robot/simulator controller, add the
following code:

MathLib::Vector x,xd,xT; //defining the required variables
x.Resize(d); //d is the dimensionality of  your model
xd.Resize(d);

/* Set the input value based on how you have defined your
SEDS model. For example, x could be the position of
the robot's end-effector. */

x = ?;

xT = ?; // Set the value of  the Target (for example from the vision)

x -= xT; //Transformation into the target frame of  reference

mySEDS.doRegression(x,xd);  // Estimating xd at x

xd.Print("xd = "); //Printing the value of  xd
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• Steps to follow in your code, continued :

7) If your model is trained based on the robot workspace variables
(e.g. end-effector position/orientation), you need to use an
inverse kinematic approach to convert xd to joint velocities for
your robot. If your model is based on joint values, then just send
the joint velocity (i.e. xd) to your controller. For further intuition
refer to the SEDS control architecture.

8) Now you could compile, and run your program. Enjoy!
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• Synchronize coordination between two DS

• An interesting application in human arm-hand coordination

• Individual DS for reach (master) and grasp (slave) dynamics,
spatially coupled.

Hand  transport dynamics

Finger motion dynamics

Desired finger configuration 
for coordinated motion

* Shukla and Billard (2011), RSS
48



Alpha → Speed of reaction 
under perturbation

Beta → Amplitude of
reaction under perturbation
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 Catching a half filled bottle of water*
- Robot is controlled at 1000Hz.
- Robot arm-hand coordination
- The bottle is tracked at 240Hz.

* Kim, Shukla, and Billard (2013), under submission
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• Practice #3: CDS MATLAB Package

• Steps to follows:
1) Go to the folder ‘Extensions/CDSv1’

2) Open the file ‘CDS_example.m’.

3) Run this script

4) You could also follow the instructions written in the code to
modify it according to your need.
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• Reaching the target with a non-zero velocity

• We formalize robot motions as a multiplication of:
1. A target field

- Specifies the direction of motion

2. A strength factor
- Indicates the speed of movement

• Hence the final model is:
Hitting movements

A
B

* Khansari-Zadeh et. al. (2012), Advanced Robotics
Kronander et. al. (2011), IROS, winner of the JTCF best technology paper award
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• We define the target field as:

• Estimation of the target field = estimation of a globally stable DS

 We could use any of the proposed learning approach
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• The strength factor:
• To form the speed profile
• To change the hitting speed at the target

• It does not compromise the global convergence

• It can be learned from the same demonstrations using various
regression techniques
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 Learning and Generating the Swing motion in minigolf:
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• Obstacle avoidance for the end-effector:

Modulation due to the
presence of obstacle(s)

The total effect of all obstacles 
linear and angular velocity

DS Model
In obstacle’s frame

Original DS Model Modulated DS

Obstacles

* Khansari-Zadeh and Billard (2012), Autonomous Robots
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• Modeling obstacles by a convex manifold :

• has smoothness

• increases monotonically with
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• The modulation matrix            is given by:

• Each modulation matrix is computed based on:
• The geometry of the obstacle
• The distance to the obstacle
• The speed of the obstacle
• Some user-defined properties

Modulation due 
to each obstacle
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Robot motion
generated from DS

Object 1

Object 2

Object N

Vision
Object Recognition from a
Library of known objects

K objects’ modelDS-based Obstacle 
Avoidance

Commanded velocity to the robot

Is there enough
time to recognize 

the object(s)? Yes

No

Fit a simple convex 
envelope around the point 
cloud of the obstacle(s).
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 Placing a glass in a cluttered environment
- Robot is controlled at 500Hz.

Tracked at 100Hz
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 Dodging a fast moving box
- Robot is controlled at 1000Hz.
- At each trial, the box reaches a maximum linear and angular

velocities of 0.6~1.5m/s and/or 40~120 deg/s.

65

The box is tracked at 240Hz
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Robotics:
• The first imitation learning approach that ensures stability of 

nonlinear multi-dimensional autonomous DS.

• An all-encompassing framework to generate
discrete motions with a number of interesting features:

Machine Learning:
• Providing a statistical-based method to estimate globally

stable DS from a set of demonstrations.

 Easy to program
 Global convergence
 Instant adaptation
 Modular

 Time-independent 
 Inherent robustness
 Various applications
 Multi-dimensional
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• Modeling DS motions with kinematic variables
• Robot dynamics is not explicitly considered
• May introduce some inaccuracies

• Composition and superposition of DS motions
• Is useful for generating more complex motions
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