
ROS Best Practices

Lorenz Mösenlechner
Technische Universität München

July 24th, 2012

ROS Overlays

I Never edit files in /opt/ros/....

I Use ROS Overlays
I Multiple overlays with different versions can exist in parallel.

I Overlay for development.
I Overlay for demos.
I Overlay for experimenting with bleeding edge code of other people.

I Tool support for creating, modifying and managing overlays: rosws.

ROS Overlay

An overlay is a directory in the user’s home that contains stacks and
packages that are installed from source.

ROS Best Practices

Lorenz Mösenlechner

ROS Overlays

I Never edit files in /opt/ros/....

I Use ROS Overlays

I Multiple overlays with different versions can exist in parallel.
I Overlay for development.
I Overlay for demos.
I Overlay for experimenting with bleeding edge code of other people.

I Tool support for creating, modifying and managing overlays: rosws.

ROS Overlay

An overlay is a directory in the user’s home that contains stacks and
packages that are installed from source.

ROS Best Practices

Lorenz Mösenlechner

ROS Overlays

I Never edit files in /opt/ros/....

I Use ROS Overlays
I Multiple overlays with different versions can exist in parallel.

I Overlay for development.
I Overlay for demos.
I Overlay for experimenting with bleeding edge code of other people.

I Tool support for creating, modifying and managing overlays: rosws.

ROS Overlay

An overlay is a directory in the user’s home that contains stacks and
packages that are installed from source.

ROS Best Practices

Lorenz Mösenlechner

ROS Overlays

I Never edit files in /opt/ros/....

I Use ROS Overlays
I Multiple overlays with different versions can exist in parallel.

I Overlay for development.
I Overlay for demos.
I Overlay for experimenting with bleeding edge code of other people.

I Tool support for creating, modifying and managing overlays: rosws.

ROS Overlay

An overlay is a directory in the user’s home that contains stacks and
packages that are installed from source.

ROS Best Practices

Lorenz Mösenlechner

ROS Overlays
Creating an overlay with rosws

1. Install rosws: sudo pip install rosinstall

2. Create a new overlay:
rosws init ~/fuerte /opt/ros/fuerte

3. Load the created file setup.bash in .bashrc (optional):
echo "source ~/fuerte/setup.bash" >> ~/.bashrc

ROS Best Practices

Lorenz Mösenlechner

ROS Overlays
Adding packages to an overlay

I Add a local directory (e.g. a sandbox for experimental packages) to
the overlay:

mkdir ~/fuerte/sandbox

rosws set ~/fuerte/sandbox

I Install packages from a rosinstall file:

rosws merge robohow-cram.rosinstall

rosws update

I Install a (released) stack from source:

roslocate info turtlebot | rosws merge -

rosws update

ROS Best Practices

Lorenz Mösenlechner

Rosinstall files

I YAML descriptions of repositories to install.

I Ideal for repository snap shots and collaboration.

I Possibility to specify versions.
I Example:

- git:

local-name: cram_pl

uri: http://code.in.tum.de/git/cram-pl.git

version: 0.1.5

- svn:

local-name: knowrob

uri: http://code.in.tum.de/pubsvn/knowrob/tags/latest

ROS Best Practices

Lorenz Mösenlechner

Naming Conventions
File names

I Package names are lower case.

I Packages and stacks must not contain dashes (“-”), only
underscores (“ ”).

I Messages, services and actions are named in camel case:
geometry_msgs/PoseStamped

I Don’t use the word “action” in an action definition. Foo.action,
not FooAction.action.

I C++ source files and header files are named in lowercase, using
underscores:
my_package/include/my_package/foo_bar.h

my_package/src/foo_bar.cpp

I C++ classes are normally named in camel case:
class FooBar { ... };

ROS Best Practices

Lorenz Mösenlechner

Naming Conventions
Topics, parameters, actions, services

I Nodes, topics, services, actions, parameters are all lower case with
underscores as separator.

I Never use global names, always node local topic, service, action
and parameter names. Use ros::NodeHandle handle("~")

Bad
ros::NodeHandle nh();

nh.advertise<Foo>("foo", 10);

⇓
Topics:

/foo

Good
ros::NodeHandle nh("~");

nh.advertise<Foo>("foo", 10);

⇓
Topics:

/node_name/foo

ROS Best Practices

Lorenz Mösenlechner

Best Practices
Topics vs. Services vs. Actions

I Use topics for publishing continuous streams of data, e.g. sensor
data, continuous detection results, . . .

I Use services only for short calculations.

I Use actions for all longer running processes, e.g. grasping,
navigation, perception, . . .

ROS Best Practices

Lorenz Mösenlechner

Best Practices
Misc

I Don’t require a specific startup order for nodes. Use
waitForService, waitForTransform, waitForServer, . . .

I Use standard data types when possible.

I Don’t define matrix data types for transforms but use
geometry_msgs/PoseStamped.

I Use ros::Time, ros::Duration and ros::Rate instead of
system time.

I Don’t use command line parameters but the ROS parameter server.

I Use rosconsole utilities for logging (ROS_INFO, ROS_DEBUG, . . .).

I Never call cmake by hand in a package!

ROS Best Practices

Lorenz Mösenlechner

Best Practices
ROS package

I ROS packages are cheap, create many.

I One package per functionality.

I Create separate packages that contain only messages, services and
actions (separation of interface and implementation).

I Keep your dependencies clean:
I only depend on what you need
I specify all dependencies
I don’t use implicit dependencies

I Provide launch files.

I Group packages in stacks.

ROS Best Practices

Lorenz Mösenlechner

3rd Party Libraries

I If possible, try to use libraries from Debian packages.

I Specify rosdep dependencies (tool for installing system packages).

I If you need to compile a library from source create a ROS wrapper
package that downloads and compiles the package.

I Don’t use sudo in wrapper packages.

I Don’t require manual system wide installations.

I Don’t copy libraries into packages that need them.

ROS Best Practices

Lorenz Mösenlechner

Collaboration

I Use version control systems (e.g. git or svn)

I Create tags for stable versions that others can use.

I Provide a rosinstall file.
I Create a short Wiki page for each package:

I Document what the node does.
I Document topics, services and actions that are required and

provided.
I Document ROS parameters and their default values.

I Data can be recorded and exchanged using bag files.

ROS Best Practices

Lorenz Mösenlechner

Working with Version Control
General guidelines

I Don’t check in auto generated files.

I Don’t check in huge binary files (important in git!)

I Set ignores (.gitignore or svn:ignore property)

I Commit often.

I Make one commit per feature.

ROS Best Practices

Lorenz Mösenlechner

Working with Version Control
Tagging

I To not break code other people are using, provide stable releases
that other people are supposed to use.

I SVN: svn cp --parents <repo>/trunk <repo>/tags/0.0.1

I Git: git tag 0.0.1 master

I Use version fields in rosinstall files to refer to a tag.

ROS Best Practices

Lorenz Mösenlechner

ROS Bag Files

I Recording of a bag:
rosbag record <topic> <topic> ...

I Play a bag:
rosbag play foo.bag

I Play a bag using recorded time (important when stamped data and
TF was recorded):
rosbag play --clock foo.bag

ROS Best Practices

Lorenz Mösenlechner

