iTaSC concepts and tutorial Robohow

KATHOLIEKE UNIVERSITEIT

Wilm Decré Tinne De Laet Dominick Vanthienen Herman Bruyninckx Joris De Schutter

Katholieke Universiteit Leuven Department of Mechanical Engineering Division PMA **Robotics Research Group**

March 12, 2012

problem statement

challenge

programming general sensor-based robot systems for complex tasks

complex tasks:

- combination of subtasks
- sensor feedback
- large variety of robot systems
- uncertain environments

problem statement

current state

- reprogramming for every task
- specialist
- time consuming + expensive

our goal

development of programming support:

- non-specialists
- less time consuming

problem statement

programming support

SYSTEMATIC approach of specification of tasks using constraints 'iTaSC': instantaneous Task Specification using Constraints

our contribution

framework with:

- systematic approach and
- estimation support for uncertain environments

aim of presentation

aim of presentation

- to show, by means of an example application, how framework for 'Constraint-based task specification and Estimation for Sensor-Based Robot Systems in the Presence of Geometric Uncertainty' works and what its advantages are
- explain generic control and estimation scheme
- show application to other example tasks
- give status, extensions, and outlook

laser tracing task

Figure: simultaneous laser tracing on a plane and a barrel

overview

introduction

framework

general principle control and estimation scheme task modeling

control and estimation

example applications

status, extensions & outlook

software support

general principle

- robot task: accomplishing relative motion and/or controlled dynamic interaction between objects
- specify task by imposing constraints
 ⇒ task function approach or constraint-based task programming

application independent versus application dependent

- application independent: control and estimation scheme
- application dependent but systematic: task modeling procedure

control and estimation scheme

Figure: general control scheme

plant P:

- \Box robot system (q)
- environment
- controller C
- model update and estimation M + E

control and estimation scheme

Figure: general control scheme

nomenclature:

- *control input u*: desired joint velocities
- system output y: controlled variables ⇒ task specification = imposing constraints y_d on y
- measurements z: observe the plant

control and estimation scheme

conclusion

task independent derivation of controller block and model update and estimation block IF specific *task modeling* procedure is used

task modeling

- task modeling uses TASK COORDINATES:
- two types of task coordinates:
 - \square feature coordinates, χ_{f}
 - \square uncertainty coordinates, χ_{μ}
- task coordinates defined in user-defined frames

goal

choose frames and task coordinates in a way the task specification becomes intuitive

framework presents procedure to do this

four steps:

- 1. identify objects and features and assign reference frames
- 2. choose feature coordinates χ_f
- 3. choose uncertainty coordinates χ_{μ}
- 4. specify task

four steps:

- 1. identify objects and features and assign reference frames
- 2. choose feature coordinates χ_f
- 3. choose uncertainty coordinates χ_{μ}
- 4. specify task

- a feature is linked to an object
- physical entity (vertex, edge, face, surface...)
- abstract geometric property (symmetry axis, reference frame of a sensor,...)

Figure: object and feature frames

each constraint needs four frames:

- two object frames: o1 and o2
- two feature frames: f1 and f2

Figure: object and feature frames laser tracing

- natural task description imposes two motion constraints:
 - 1. trace figure on plane
 - 2. trace figure on barrel
 - \Rightarrow two feature relationships:
 - 1. feature a: for the laser-plane
 - 2. feature b: for the laser-barrel

the objects are:

- 1. laser *a* and laser *b*
- 2. the plane
- 3. the barrel

object and feature frames

- for laser-plane feature:
 - \Box frame $o1^a$ fixed to plane
 - frame o2^a fixed to first laser, z-axis along laser beam
 - □ frame *f*1^{*a*} same orientation as *o*1^{*a*}, at intersection of laser with plane
 - frame f2^a same position as f1^a and same orientation as o2^a
- for laser-barrel feature:

object and feature frames

- for laser-plane feature:
- for laser-barrel feature:
 - □ frame $o1^b$ fixed to barrel, x-axis along axis of barrel
 - frame $o2^b$ fixed to second laser,
 - z-axis along the laser beam
 - frame f1^b at intersection of laser with barrel, z-axis perpendicular to barrel surface, x-axis parallel to barrel axis
 - □ frame $f2^b$ same position as $f1^b$, same orientation as $o2^b$

four steps:

- 1. identify objects and features and assign reference frames
- 2. choose feature coordinates χ_f
- 3. choose uncertainty coordinates χ_{μ}
- 4. specify task

STEP 2: feature coordinates

Figure: object and feature frames and feature coordinates in general six degrees of freedom between o1 and o2

•
$$o1 \rightarrow f1 \rightarrow f2 \rightarrow o2 = virtual$$

kinematic chain

 $\{o2\}_{\chi_{fill}}$ {f2} for every feature χ_f can be partitioned

$$\boldsymbol{\chi}_{\boldsymbol{f}} = \left(\begin{array}{cc} \boldsymbol{\chi}_{\boldsymbol{f}\boldsymbol{I}}^{T} & \boldsymbol{\chi}_{\boldsymbol{f}\boldsymbol{I}\boldsymbol{I}}^{T} & \boldsymbol{\chi}_{\boldsymbol{f}\boldsymbol{I}\boldsymbol{I}}^{T} \end{array} \right)^{T}$$

STEP 2: feature coordinates

laser-plane feature:

$$\chi_{fI}^{a} = (x^{a} y^{a})^{T} (1)$$

$$\chi_{fII}^{a} = (\phi^{a} \theta^{a} \psi^{a})^{T} (2)$$

$$\chi_{fIII}^{a} = (z^{a}) (3)$$

laser-barrel feature

17 / 45

STEP 2: feature coordinates

- laser-plane feature
- laser-barrel feature:

$$\chi_{fI}^{b} = (x^{b} \alpha^{b})^{T} (1)$$

$$\chi_{fII}^{b} = (\phi^{b} \theta^{b} \psi^{b})^{T} (2)$$

$$\chi_{fIII}^{b} = (z^{b}) (3)$$

four steps:

- 1. identify objects and features and assign reference frames
- 2. choose feature coordinates χ_f
- 3. choose uncertainty coordinates χ_{μ}
- 4. specify task

STEP 3: uncertainty coordinates

focus on two types of geometric uncertainty:

1. uncertainty pose of object, and

2. uncertainty pose of feature wrt corresponding object uncertainty *coordinates represent* pose uncertainty of real frame wrt modeled frame:

Figure: feature and uncertainty coordinates

STEP 3: uncertainty coordinates

unknown position and orientation plane :

$$\chi_{\mu l}^{a} = \left(\begin{array}{cc} h^{a} & \alpha^{a} & \beta^{a} \end{array} \right)^{T}$$

unknown position barrel:

$$\chi_{ul}^{\ b} = \left(\begin{array}{cc} x_u^b & y_u^b \end{array} \right)^T$$

four steps:

- 1. identify objects and features and assign reference frames
- 2. choose feature coordinates χ_f
- 3. choose uncertainty coordinates χ_{μ}
- 4. specify task

observation

task is easily specified using task coordinates χ_{f} and χ_{u}

remember: task objective is twofold:

- 1. trace desired figure on plane
- 2. trace desired figure on barrel

observation

task is easily specified using task coordinates χ_{f} and χ_{u}

output equations:

□ for the plane:

$$y_1 = x^a$$
 and $y_2 = y^a$

for the barrel

constraint equations:

in this example the desired paths are circles: $y_{id}(t)$, for i = 1, ..., 4

measurement equations:

$$z_1 = z^a$$
 and $z_2 = z^b$

robohéw

observation

task is easily specified using task coordinates χ_f and χ_μ

output equations:

- for the plane
- $\hfill\square$ for the barrel:

$$y_3 = x^b$$
 and $y_4 = \alpha^b$

constraint equations: in this example the desired paths are circles: $y_{id}(t)$, for i = 1, ..., 4

measurement equations:

$$z_1 = z^a$$
 and $z_2 = z^b$

observation

task is easily specified using task coordinates χ_f and χ_u

output equations:

- □ for the plane
- for the barrel

constraint equations:

in this example the desired paths are circles: $y_{id}(t)$, for i = 1, ..., 4

measurement equations:

$$z_1 = z^a$$
 and $z_2 = z^b$

observation

task is easily specified using task coordinates χ_f and χ_μ

output equations:

- for the plane
- $\hfill\square$ for the barrel

constraint equations:

in this example the desired paths are circles: $y_{id}(t)$, for i = 1, ..., 4

measurement equations:

$$z_1 = z^a$$
 and $z_2 = z^b$

observation

task is easily specified using task coordinates χ_{f} and χ_{u}

position loop constraints: two position loop constraints, one for each feature relationship

- laser-plane feature a
- Iaser-barrel feature b

observation

task is easily specified using task coordinates χ_{f} and χ_{u}

position loop constraints: two position loop constraints, one for each feature relationship

- laser-plane feature a
- Iaser-barrel feature b

task modeling

conclusion

- application dependent but systematic modeling procedure provided easy task specification and uncertainty modeling
- application independent controller and model update and estimation block automatically derived

 \Rightarrow overall fast and easy task specification

Figure: general control scheme

overview

introduction

framework

control and estimation

equations control law model update and estimation

example applications

status, extensions & outlook

software support

 robot system equation: relates the control input u to the rate of change of the robot system state:

$$\frac{d}{dt} \begin{pmatrix} \boldsymbol{q} \\ \dot{\boldsymbol{q}} \end{pmatrix} = \boldsymbol{s}(\boldsymbol{q}, \dot{\boldsymbol{q}}, \boldsymbol{u})$$
(5)

 output equation: relates the position based outputs y to the joint and feature coordinates:

$$\boldsymbol{f}(\boldsymbol{q},\boldsymbol{\chi}_{\boldsymbol{f}}) = \boldsymbol{y} \tag{6}$$

Equations (2)

 measurement equation: relates the position based measurements z to the joint and feature coordinates:

$$\boldsymbol{h}(\boldsymbol{q},\boldsymbol{\chi}_f) = \boldsymbol{z} \tag{7}$$

artificial constraints: used to specify the task:

$$\mathbf{y} = \mathbf{y}_d \tag{8}$$

natural constraints: for rigid environments:

$$\mathbf{g}(\boldsymbol{q},\boldsymbol{\chi}_{\boldsymbol{f}}) = \mathbf{0} \tag{9}$$

ightarrow special case of the artificial constraints with $m{y}_d=0$

Equations (3)

• dependency relation between q and χ_f , perturbed by uncertainty coordinates χ_{μ} :

$$\boldsymbol{I}(\boldsymbol{q},\boldsymbol{\chi}_{\boldsymbol{f}},\boldsymbol{\chi}_{\boldsymbol{\mu}}) = \boldsymbol{0} \tag{10}$$

 \rightarrow nonholonomic systems: replace **q** by operational coordinates χ_q \rightarrow derived using position closure equations \Rightarrow *loop constraints*

auxiliary coordinates

the benefit of introducing feature coordinates χ_f is that they can be chosen according to the specific task at hand, such that equations (6)–(9) can much be simplified. A similar freedom of choice exists for the uncertainty coordinates in equation (10)

control law

goal

1. provide system input **u** at each time step

- here: assume a velocity-controlled robot $(\boldsymbol{u} = \dot{\boldsymbol{q}}_d)$
- control law is based on system linearization, resulting in an equation of the form (details in appendix):

$$\boldsymbol{A}\dot{\boldsymbol{q}}_{d} = \dot{\boldsymbol{y}}_{d}^{\circ} + \boldsymbol{B}\hat{\boldsymbol{\chi}}_{\boldsymbol{\mu}}, \qquad (11)$$

with

$$\dot{\boldsymbol{y}}_{d}^{\circ} = \dot{\boldsymbol{y}}_{d} + \boldsymbol{K}_{p}(\boldsymbol{y}_{d} - \boldsymbol{y})$$
(12)

robohéw LEUVEN

 weighted pseudo-inverse solving approach can handle over- and/or underconstrained cases next to constraint weighting: levels of constraints based on nullspace projections
 28 / 45

model update and estimation

goal

- provide estimate for system outputs y used in feedback terms of constraint equations (12)
- 2. provide estimate for the uncertainty coordinates χ_{μ} used in control input (??)
- 3. maintain consistency between joint and feature coordinates q and χ_f based on the loop constraints

model update and estimation is based on an extended system model:

$$\frac{d}{dt} \begin{pmatrix} \mathbf{q} \\ \chi_{f} \\ \chi_{u} \\ \chi_{u} \\ \chi_{u} \\ \chi_{u} \end{pmatrix} = \begin{pmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & -\mathbf{I}_{f}^{-1} \mathbf{J}_{u} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{q} \\ \chi_{f} \\ \chi_{u} \\ \chi_{u} \\ \chi_{u} \\ \chi_{u} \end{pmatrix} + \begin{pmatrix} \mathbf{1} \\ -\mathbf{I}_{f}^{-1} \mathbf{I}_{q} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{pmatrix} \dot{\mathbf{q}}_{d}$$
(13)

robohew

explanation:

- 1. first row: system equation
- 2. second row: time-derivative of loop closure $I(q, \chi_f, \chi_\mu) = 0$
- 3. further rows: 'motion models' for uncertainty coordinates χ_{μ} (in this example: constant acceleration model)

this model is used in an estimator, e.g. Kalman filter or particle filter

model update and estimation

prediction-correction procedure

prediction

- 1. generate prediction based on extended system model
- 2. eliminate inconsistencies between predicted estimates

correction

- 1. generate updated estimated based on predicted estimates and information from sensor measurements
- 2. eliminate inconsistencies between predicted estimates

overview

introduction

framework

control and estimation

example applications

status, extensions & outlook

example applications

rehabilitation robot (LWR)

- shared control between robot and human (conflicting constraints)
- constraint weighting (hence impedance) varies during therapy
- trajectory constraints imposed by robot are collected from demonstration by healthy human

example applications

human-robot comanipulation with PR2-robot

- robot head tracks head of human
- grippers are kept parallel and at constant distance
- end effector wrenches are controlled to zero
- joint limits are avoided (inequality constraints)
- obstacle in environment is avoided (inequality constraint)

overview

introduction

framework

control and estimation

example applications

status, extensions & outlook

lowest level (constraint level)

- both equality and inequality constraints
- control input at velocity, acceleration or torque level
- constraint weighting in constraint space (overconstrained case), joints space (underconstrained case) or constraint priorities based on null-spaces
- constraint values or trajectories can be obtained from (human) demonstrations

intermediate level (skill level)

- controlled by Finite State Machine
- activates/deactivates constraints
- changes priorities/weights
- changes desired constraint values

robot systems: holonomic/nonholonomic

- fixed arm
- mobile platforms
- mobile platforms with two arms
- quadrotor helicopter
- multiple robots

• . . .

software support available

- constraint & skill level
- specification & control of constraints
- TODO: estimation of geometric uncertainties

from instantaneous optimal control to globally optimal control

- every robot task is formulated as a global constrained optimization problem (e.g. to plan optimal trajectory)
- fast numerical solver (ACADO) developed at KU Leuven (OPTEC) (OPTEC: Centre of Excellence 'Optimization in Engineering')

overview

introduction

framework

control and estimation

example applications

status, extensions & outlook

- 🗸 modular design
- ✓ flexible user interface: add/remove constraints, change weights...
- ✓ modular task specification: share and reuse tasks
- separation of concerns: communication, computation, coordination, configuration, and connectivity
- implementation with Orocos
- code available under LGPL/BSD license
- www.orocos.org/itasc

software support

42 / 45

overview

introduction

framework

control and estimation

example applications

status, extensions & outlook

conclusion (1)

conclusion

- motion specification and estimation in unified framework
- automatic application independent derivation of control and model update and estimation
- application dependent but systematic task modeling

further reading

framework journal paper

- Constraint-Based Task Specification and Estimation for Sensor-Based Robot Systems in the Presence of Geometric Uncertainty
- Joris De Schutter, Tinne De Laet, Johan Rutgeerts, Wilm Decré, Ruben Smits, Erwin Aertbeliën, Kasper Claes, and Herman Bruyninckx
- Journal of Robotics Research, May 2007, vol. 26, no. 5, pages 433–455

extended framework conference paper

- Extending iTaSC to Support Inequality Constraints and Non-Instantaneous Task Specification
- Wilm Decré, Ruben Smits, Herman Bruyninckx, and Joris De Schutter
- Proceedings of the International Conference on Robotics and Automation, 2009, pages 964–971

THANKS FOR YOUR ATTENTION!