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I. EXTENDED ABSTRACT

One way to combine high-level task descriptions with low-
level motion execution, is to learn them concurrently and figure
out the relationship between them. We approach the problem
from a Learning from Demonstration (LfD) perspective. We
are interested in scenarios where the robot user will not have
robotics background such as in a factory floor, hospital or
at home, whom we call end-users. In our previous work on
learning low-level motion execution with end-users [2, 3], we
observed they were trying to communicate what to do,in a task
more than how to do 1it, i.e. , they were more concerned on
completing the task successfully rather then providing clean,
consistent and noise free demonstrations. The what to do part
can be interpreted as (sub-)goals and how fo do part as the
low-level motion to achieve them. We can relate (sub-)goals
as constraints since, if certain constraints are satisfied, then
the task is achieved. Based on these observations, we propose
a buttom-up approach to learning constraints and motions that
satisfy these constraints from human demonstrations.

In [2l], we proposed keyframe demonstrations, which are
temporally sparse set of points instead of full trajectories
which satisfy the task when connected together. We argue that
keyframes are easier for end-users to provide and result in
cleaner data. Keyframes end up being explicit salient points
of the task which would serve well as being point constraints.
However, trajectories are needed where the low-level motion
is non-linear (e.g. scooping) or has dynamic components
(e.g. throwing). As such, it is not easy to extract continuous
constraints (e.g. keeping a mug straight when transporting
it) just from keyframes. In [2], we also proposed hybrid
demonstrations, in which, the user is free to mix keyframes
and trajectories in the context of a single demonstration. The
trajectory portions of the task can be used to extract contin-
uous constraints. In [1]], we proposed a learning framework,
called Keyframe Learning from Demonstration (KLfD), for
keyframe, trajectory and hybrid demonstrations.

Constraints can be in the task space (e.g. keep end-effector
close a certain point) as well as the perceptual space. For ex-
ample in scooping coffee beans, the aim is to have some coffee
beans inside a spoon after the execution. If a camera is used,
the color change of the spoon (e.g. from the original color to
the color of the coffee beans) can represent a constraint. Due
to the stochastic nature of real environments, perception plays
an important role, e.g. to know whether a constraint is satisfied
or not and if it is not, help error recovery. In this work, we
augment this framework to learn action and perception models

of a task demonstrated with keyframes , evaluate it with end-
users and discuss potential future directions.

In the original KLfD work, a single keyframe was the
state of the robot’s end effector. In our approach, we also
collect a perceptual keyframe sequence. In this section we
describe (1) gathering demonstrations and (2) learning action
and perception models, and (3) using the learned model.

The user provides demonstration via kinesthetic teaching,
whereby the teacher physically manipulates the robot.The
system records a motor keyframe and a perceptual keyframe at
each keyframe location. The motor keyframe is a typical state
representation in LfD skill learning, end-effector pose with
respect to the object of interest. The perceptual keyframe is a
perceptual snapshot of the workspace, taken with an overhead
camera. Background subtraction and known object hue ranges
are used to segment the image and extract features

We use the motor keyframe sequence to learn an action
model of the skill, and the perceptual keyframe sequence
to learn a perceptual model of the skill. We use a Hidden
Markov Model (HMM) approach since HMMs provide a
probabilistic framework which we leverage. We use the same
learning algorithm on both the motor keyframes and the
perceptual keyframes to learn action models and perceptual
models respectively. We model the emissions as multivariate
Gaussian distributions on the corresponding space. We train
our HMM with the Baum-Welch algorithm and use Bayesian
Information Criterion to decide on the number of states.

We expect to learn meaningful state representations in the
perceptual space. A state with a high prior but with a low
incoming transition probability is an initial condition of a
skill. A state with a high incoming probability and outgoing
probability can be interpreted as a sub-goal of the skill. A state
with low outgoing transition probability and high incoming
transition probability acts like a terminal state and can be
interpreted as a goal of the skill. These notions are depicted in
Fig.[I} These individual states can be interpreted as constraints,
thus these HMMs model both the pose and perceptual con-
straints, their ordering (via transition probabilities) and their
strength (via the emission probabilities, if variance is low then
the state is a “harder” constraint).

In the execution phase, a keyframe sequence is generated
by using the motor skill model. This is done by selecting a
state with a non-zero prior and transitioning to the next most
likely state (by following the probabilities in the transition
matrix) until a goal state is encountered. Then, the means of
the corresponding emission probabilities define an end-effector
pose sequence to be followed in the motor space. The robot
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Fig. 1. A typical HMM resulting from the learning process described.

extracts a perceptual keyframe at these poses which results in
a sequence of perceptual keyframes for the execution, which
is then tested against the learned perceptual skill model.

A sequence of a short length can have a high likelihood
score but it might not be enough to complete the task, e.g. ob-
serving an incomplete portion of a task as a full execution
would yield a high likelihood. On the other hand, it is not
enough to just check whether the end-state is a goal state for
all the skills. Sub-goals of the skill might be important to
achieve but not be visible at the end state. We use a two step
procedure to decide whether an observed sequence is a failed
execution or not. First, we check if this sequence is likely to
be from the HMM of the skill. If so, we check whether the last
keyframe of this sequence is likely to be a goal state or not.
We utilize thresholds on log-likelihood to decide on whether a
sequence is from an HMM and whether a state is a goal state.

We collected data from 8 users, none of whom had prior
experience interacting with a humanoid robot. We use two
skills our evaluation are: Close the box: This skill requires to
teach the robot to close the box. Place: This skill requires the
placement the red semi-circular block and the green block in a
certain configuration in front of the robot. There are 4 different
initial conditions (e.g. 4 different object locations) per skill.

In our qualitative analysis, we visualize the resulting
HMMs. When we look at the motor models, they do not
match across the users (e.g. , closing the box back handed
vs. a forward facing hand). However, their perceptual models
are very similar. Moreover, when we pool their data, we can
learn a consistent perceptual model, but the motor model does
not make sense, due to the widely varying motor strategies.

We performed hold-one-out cross validation, training a per-
ceptual skill model with the 28 demonstrations from 7 users,
holding out the demonstrations of the 8th user for testing, and
averaging the performance. The held out demonstrations are
used to test the model in the case of success. Since all the
demonstrations were positive examples of skill completion,
all four demonstrations can be used as cases where the HMM
should classify the observation as successful.

To test the model’s ability to detect the case when the
skill fails, we manipulate the demonstrated sequences to create
failure cases. Recall that the success/failure decision has two
components; checking if the observed sequence is likely to
be from the HMM and checking if the observation terminated
at a goal state. Thus we manipulate each of the test data to
create observation sequences that fail in one or the other of

these two cases; unfinished sequence and unlikely sequence.

The close the box skill, has typically shorter sequences,
which results in higher likelihoods per sequence. As the thresh-
old is relaxed, more failed data with correct ends are classified
as coming from the learned HMM. The best threshold yields
up to 95% correct classification on the data for both of the
failure cases and 100% for the cross-validation.

The place skill has longer sequences, thus only ending in the
correct state can be classified as failure easily, thus we have
100% accuracy in the unlikely sequence failure case. However
there is also relatively high variance on the end-state. Thus, our
failure detection with unfinished sequence results are around
80%. Cross validation results are around 90%.

Finally we analyze the performance of the perceptual mod-
els by using them in conjunction with the motor skill models.
For this analysis we use the close the box skill model for two
different users. The uncertainties in the series elastic actuators,
object location estimation efc. make the skill execution results
non-deterministic. We run each model 10 times and present
the results in Table [I} Both perceptual models performed well
at the execution monitoring task. Particularly given that only
4 demonstrations were used to train the perceptual models.
Subject 2 has a less successful skill model, that only succeeded
in 2 out of 10 execution trials. This user’s perceptual model
was able to capture both the successes and the failures.
Subject 1 on the other hand, had a more successful skill
model, succeeding in 7 out of 10 execution trials. This user’s
perceptual model failed to classify 1 of the failures, which was
hard for the perceptual features to distinguish.

These results are promising for future work to learn and
monitor and combine motor and perceptual skill models and
constraints for LfD. By grouping frequent constraints and their
relations, a high-level representation can be created from low-
level demonstrations which could lead to learning and using
both low-level and high-level representations in parallel.

TABLE I
CLASSIFICATION RESULTS FOR ROBOT SELF-MONITORING.
Success | Fail

Subiect 1 Classified Success 7 1
ubjec Classified Fail 0 2

. Classified Success 2 0
Subject 2 sified Fail 0 g
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