
ICT Call 7

ROBOHOW.COG

FP7-ICT-288533

Deliverable D7.3:

Guidelines for software development

January 31st, 2013



D7.3 FP7-ICT-288533 ROBOHOW.COG January 31st, 2013

Project acronym: ROBOHOW.COG
Project full title: Web-enabled and Experience-based Cognitive Robots that

Learn Complex Everyday Manipulation Tasks

Work Package: WP 7
Document number: D7.3
Document title: Guidelines for software development
Version: 1.0

Delivery date: January 31st, 2013
Nature: Report
Dissemination level: Public

Authors: Keith François (CNRS)
Lorenz Mösenlechner (Uni-HB)

The research leading to these results has received funding from the European Union Seventh
Framework Programme FP7/2007-2013 under grant agreement no288533 ROBOHOW.COG.

2



Contents

1 Introduction 5

2 General guidelines 6

2.1 General shape of package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Generic package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 ROS package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 File convention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Line endings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Naming convention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Clarify and document your code . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Test a lot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Bug tracking - bug report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.6 Feature request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.7 Deprecation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Versioning general settings 11

3.1 SVN or Git? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Commit message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Tag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4 Branch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.5 Communication with remote repository . . . . . . . . . . . . . . . . . . . . . . . 14

3.5.1 Recommended practices . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.5.2 Merging of branches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.5.3 Rebasing during branch update . . . . . . . . . . . . . . . . . . . . . . . 16

3.5.4 Cleaning up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.5.5 Warning on git rebase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.6 Structure of a GIT repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.7 Working in community . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.8 Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 ROS guidelines 21

4.1 ROS Overlays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Naming Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 Best Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.4 Third Party Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.5 Collaboration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3



D7.3 FP7-ICT-288533 ROBOHOW.COG January 31st, 2013

4.6 Relase of the software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.7 ROS Bag Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Code guidelines 24
5.1 CPP guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2 Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.3 XML: robot model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.4 CMake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4



Chapter 1

Introduction

This document details some rules for future developed code. Keep in mind that the code will be
read by humans and will be eventually modified by them (you may not be the last person to use
it). It must be readable, understandable and reusable.

The most important rule about coding is the consistency. Hence, if a project already has its own
format, do not impose yours, and try to adapt yourself. There are several reasons for that:

• Correcting everything will take you a long time that you may not have

• Temporarily mixing two coding styles is not a good thing to do.

Hence, if you are a visitor/occasional developer of a package, you may signal to the main developers
that some rules have been broken. But don’t do it by yourself, Prefer asserting the consistency
inside one package rather than the consistency inside the whole project. However, when creating
a new package, please follow those coding guidelines.

5



Chapter 2

General guidelines

• Ensure the consistency of each project (this is that important).

• Maintain the documentation up-to-date (use doxygen, sphinx...), and make your code un-
derstandable.

• Make the validation of the code easier by adding unit-tests.

• Use versioning tools (git or svn, depending on the type of data), tag versions that work and
release often.

• Keep the code clean. Remove useless and dead code (especially if it is versioned).

• Do not neglect debugging tools (e.g. make the debug easier by using assertion (C++)).

2.1 General shape of package

All packages must contain the same information (author list, description, copyright. . . ), but
depending on the type of package (generic package or ROS package), those informations will
be detailed in different locations.

2.1.1 Generic package

Packages independent from ROS should at least contain the following elements:

README(.md) The README(.md) file is the first file a newcomer will consult. The .md
extension should be added if you use markdown to make the reading of the file easier.
It should define all the informations relative to the project:

• The purpose of the package.

• The use/compilation informations: on which OS does it work? What are the dependencies
of the project (with the version if it matters).

• The related papers.

• The origin of the sources, and the project management web application (github, redmine
. . . )

6



D7.3 FP7-ICT-288533 ROBOHOW.COG January 31st, 2013

It is important to detail on which OS the code has been tested, especially for C++. While
using cmake and avoiding OS specific code or header inclusion are good practices, they do not
automatically ensure the compatibility between the platforms. For example, on windows systems,
there are some additional routines to export the symbols of the libraries. On Mac OS, the linkage
verification is stricter than on ubuntu (where the linkage can be solved at the compilation). Also,
the double precision handling may be different between 64 bits and 32 bits systems, which can
also modify the behavior of a program.

The purpose is mainly to say to users that there are no maintainers for some OS, and that they
will be on their own if they want to port the code.

Authors The list of contributing authors can be added at the top of each files. The order to
keep is the alphabetical order of last name, then first name.

Since this can be a daunting task, an alternative is to define an AUTHOR file in the root directory of
your package, in which you can indicate the corresponding(s) author(s) and list all the contributors
and a summed up detail of their contribution. To simply list the contributors, you can use the
following script:

#!/bin/sh

# Source: http://goo.gl/Y4UWR

set -e

# Get a list of authors ordered by number of commits

# and remove the commit count column

AUTHORS=$(git --no-pager shortlog -nse | cut -f 2-)

if [ -z "$AUTHORS" ] ; then

echo "Authors list was empty"

exit 1

fi

# Display the authors list and write it to the file

echo "$AUTHORS" | tee "$(git rev-parse --show-toplevel)/AUTHORS"

Copyright The full text statements of all licenses used in the project should be placed in the
LICENSES directory at the top of the repository. If you add a package under a license that is not
included in LICENSES, add the license statement.

The code developed in the frame of the robohow project should be open source. The licenses
used in this purpose are the following ones (from the more restrictive to the least one).

• GPL1, permits the use of the library only for free programs.
• LGPL2 permits the use of the library in proprietary programs.
• BSD 3

1http://www.gnu.org/licenses/gpl.html
2http://www.gnu.org/copyleft/lesser.html
3http://opensource.org/licenses/BSD-3-Clause

7



D7.3 FP7-ICT-288533 ROBOHOW.COG January 31st, 2013

2.1.2 ROS package

The organization of a ROS package is slightly different from a generic package, since more
informations are gathered in the ROS specific files manifest.xml and stack.xml. Hence ROS
packages should at least contain the following elements:

manifest.xml or stack.xml The manifest.xml (for a package) / stack.xml (for a stack) files
should detail the following informations:

• Author list
• Description
• License
• Url of the project.

As a result, please DO NOT create files such as AUTHOR, in order to avoid inconsistencies with
the manifest.xml file.

README(.md) Since the description of the package is now in the manifest/stack files, the
README file now contains less informations:

• The use/compilation informations: on which OS does it work? What are the dependencies
of the project (with the version if it matters).

• The related papers.

2.2 File convention

2.2.1 Line endings

All text files must be normalized so that lines terminate in the unix style (LF). Mixture of termina-
tion styles will sooner or later create an issue in the versioning tool when the end-of-line character
will change, and make the history unusable. Hence, avoid committing files that terminate in CRLF
(windows ending) or CR (mac ending) since such a modification is likely to appear as a whole-file
modification.

2.2.2 Naming convention

The names of the files should be in ascii, lower case, without space or numbers. The worst thing
you could do is to have two files with the same name but with a different case: this leads to
severe subversion issues on windows systems (one of the file erase the other automatically at the
checkout of the repository).

Also, please avoid too long lines in the source code: respecting a maximum of 80 chars per line
is good rule of thumb.

2.3 Clarify and document your code

Keep in mind that your code will be read, reused and (eventually) improved by humans. You want
them to use your code wisely, and you don’t have the time to help each of them personally.

8



D7.3 FP7-ICT-288533 ROBOHOW.COG January 31st, 2013

Write the documentation and the code at the same time. Detail the how of your code, but don’t
forget the why. Knowing the goal of your code will help one to detect/correct wrong behavior.
Do not hesitate to detail any specific or unusual implementation (e.g. the use of the specific
structure of a sparse matrix to gain computation time). Similarly, document your variables: units,
specific bounds, legal values and give them explicit names (avoid tmp or random sequence of
letters).
Please refer to the articles corresponding to the code, especially if the notations come from them.
Yet, do not overload your code by documenting the obvious. This can be avoided:
i+=1 //increase the index value of 1

2.4 Test a lot

Testing is the easiest way to check the behavior and good health of your code through its evolution.
It allows to find what (and who) is responsible for a wrong behavior. Also, it can also be of help
to understand the code.
The sooner the tests are added to the project, the easier it is to debug it. Similarly, the more
automatized it is, the better.

• Do unit tests (verifies the behavior of the code)

• Do regression tests (verifies that the behavior of the code do not change with the evolution
of the code)

• Do computation time tests to find bottleneck in your code (e.g. use callgrind in C++ )

• Do memory handling tests (valgrind).

Automatize your tests using ctest or gtest4.

2.5 Bug tracking - bug report

Eventually, you’ll encounter some issues using code developed by someone else.
Do not hesitate to report an issue, and to signal the issue in the code with a TODO.
Please be explicit when you report an issue, and define the following informations: your goal
(maybe there is another/safer way to do what you’re trying to do), your OS (32 bits/64 bits),
your version of ROS, the version of the packages you are using...

Prefer opening a ticket on the project management web application associated to the package,
than contacting directly the person in charge of the code. You might not be the only one to
encounter the problem and the resulting discussion might help someone else.

Help the developers to reproduce the bug, e.g. by creating a branch corresponding to your problem.

2.6 Feature request

Similarly to the bug report, prefer opening tickets on the corresponding website. You can help
someone by doing this, especially when there are reasons not to implement the proposed feature.

4http://www.ros.org/wiki/gtest

9



D7.3 FP7-ICT-288533 ROBOHOW.COG January 31st, 2013

2.7 Deprecation

As soon as there are users of your code, you have a responsibility not to pull the rug out from
under them with sudden breaking changes. Instead, use a process of deprecation, which means
marking a feature or component as being no longer supported, with a schedule for its removal.
Give users time to adapt, which is usually one release cycle, then do the removal. Similarly, be
thoughtful if you plan to change the ABI of your program.

10



Chapter 3

Versioning general settings

3.1 SVN or Git?

Use Git for text files, e.g. sources code (C, python, matlab, java...) or latex (.tex, .bib).
You may use SVN for huge binary-like files (.doc files, videos, pdf...). Indeed, using git to version
huge files will drastically increase the size of the local git repository on the user’s side. With svn,
you can do only partial checkout, which can be practical.

Define the files to be ignored by using .gitignore or svn:ignore. Typically, never version restricted
access file or automatically generated files (e.g. by a compiler). If you add by mistake such files,
contact your administrator so that he can correct this quickly before anyone pulls it.

3.2 Commit message

It is important to keep the commits as small and simple as possible. Typically, create one commit
per topic (bug fix, feature addition, documentation update...). Do NOT mix up bug fixing and
feature addition, this will make the commit impossible to understand. This will increase the
readability and make the cherry-picking and the debugging (e.g. with git bisect) easier. Hence,
do not use git commit -a, prefer adding the files one by one or only chosen parts of files in your
commit (using git add -p).

Convention Commit messages should be written in English in the present tense (so as to match
up with commit messages generated by commands like git merge and git revert). They
should have the following shape:

Brief description of the commit (< 60 characters)

Thorough description of the commit.

- item 1

- item 2

When correcting a bug, define the bug tracker reference (if any) and/or the bug origin or a small
description of it. Please avoid putting simply ”Remove bug”.

11



D7.3 FP7-ICT-288533 ROBOHOW.COG January 31st, 2013

When committing code on behalf of others use the --author option, e.g. git commit --author

"Emmett Brown <emmett.brown@bttf.org>", or thank the person in the message ”Thanks to
Emmett Brown for notifying.”

Reverting commits Sometimes, a wrong commit can be pushed, by mistake or inattention.
Before reverting a wrong commit, please contact its author so as to know if it is possible for him
to correct his mistake or if he can revert himself. If the author cannot be reached and the revert
is necessary and urgent (e.g. the main branch does not compile any more and external users need
it), please indicate the reason of the revert. It can help the author of the commit to understand
this decision, and avoid reverts of revert.

3.3 Tag

Tagging is a really handy way to ensure the coherence of a set of packages, e.g. by using pkg-
config. The release tags have the shape vX[.Y[.Z[-descr]]] (eg. 1.0, 0.2.3-beta)

• X is the major version number. Change of major version number indicates that the code
may not be backward compatible.

• Y is the minor version number. It indicates an improvement that should be backward
compatible.

• Z is the patch version (bug fix or security fix)
• desc corresponds to the beginning of the git commit id.

It is also possible to define tags for specific purpose (experiments, paper...). In this case, they can
have a different shape (eg: iros2012-FirstAuthorName).

Prefer tagging with a message, in order to get the correct tag with git describe.
Also, you can use the -s option to create a GPG-signed tag and certifies that you are the one that
created the tag.

$ git tag -s v1.2.3 -m"Small description"

$ git describe

> v1.5.1-2-g59d2 # where 59d2 is the commit number.

$ git tag -v v1.2.3

object f148df68ed4f5c1fb7d35aae68342f6bb0ab7356

type commit

tag v1.2.3

tagger Emmett Brown <emmett.brown@bttf.org> 1357239557 +0100

Small Test

gpg: Signature made Wed 21 Oct 2015 07:59:17 PM CET using RSA key ID 8D7EAAA1

gpg: Good signature from "Emmett Brown <emmett.brown@bttf.org>"

For SVN, the tag command is:
svn cp --parents <repo>/trunk <repo>/tags/v0.0.1

ROS has a specific stack version policy 1:

1http://www.ros.org/wiki/StackVersionPolicy

12



D7.3 FP7-ICT-288533 ROBOHOW.COG January 31st, 2013

• 0.1: completely experimental, unreviewed
• 0.2: some review has occurred, and we are migrating this stack to more stable APIs
• 0.3: ready to start including with distributions, though definitely not stable
• 0.4-0.8: on stable development cycle towards 1.0 release (aka tick-tock)
• 0.9: 1.0 release candidate

3.4 Branch

The main branch, master, should always be usable (compilable and executable with unit tests
successful). Another branch, stable, contains all the stable versions of the code.
Except from small modifications, all developments should be first realized in a separated branch
(that may be published or remain local), tested, then merged with the master branch.

Convention The name of the branch should describe the purpose of the branch. Sorting the
branches by sub-folders (i.e. using ’/’) increases the readability for a high number of branches.
Branches in the root folder (such as ”master”, ”stable”, ”iros02”...) should be usable whereas
work in progress should be in a sub-folder (e.g. topic/debug-dynamic, developer-name/dev for a
personal branch).

Branch or tag? Use a tag if you are sure that the corresponding commit is usable and stable.
Otherwise, use a branch, so as to allow adding patches afterwards, and make the update of local
repository easier.

Merging branches: git rebase and git merge

Consider the project with two branches initial and feature on your local machine. Two commands,
git rebase and git merge, can be used to gather the modifications realized in the two branches.
They differ in the way the blending is realized, as depicted in Fig. 3.1:

• The merge process consists in keeping the history of both branches and creating an additional
commit entitled ”Merge branch ...” that gathers the modifications of both branches.

• The rebase process consists in reapplying all the commits of the current branch after the
last commit of the target branch. For example:
emmet@pc:˜/work (feature): git rebase initial

will stack all the commits of the feature branch after the commits of the master initial, and
will rewrite the feature branch.

If you are afraid of losing the initial branch after a rebase (e.g. if one step of the rebase went
wrong), do the rebase from a temporary branch
emmet@pc:˜/work (feature): git checkout -b rebase-feature

emmet@pc:˜/work (rebase-feature): git rebase origin initial

You can also retrieve the initial branch using git reflog.
The advantage of the rebase process is to keep the history readable and more linear. As a con-
sequence, browsing the history and debugging (using git bisect) is simpler. In exchange, the
initial history is rewritten (order of commit modified, commits squashed...).

13



D7.3 FP7-ICT-288533 ROBOHOW.COG January 31st, 2013

Initial

Feature

Feature

Initial

Feature

Merge branch Feature

git merge

git rebase

Figure 3.1: Difference between the commands git merge and git rebase. The first graph represents
the original state of the git repository. The second one shows the result of the command git rebase
initial, realized on the branch feature: the shape of the branch feature changes, so that every
commit on this branch now appear after the commits of the init branch. The third graph shows
the result of the command git merge feature, realized on the branch initial : an extra commit,
gathering all the modifications realized on the branch feature, is added to the branch initial.

The advantage of the merge is that it keeps the original order of the commits. The main disadvan-
tage is that the history graph will quickly grow into a bag knot, making debugging a nightmare,
especially when several users develop on the same branch. Also, in case of conflict, the resulting
commit is likely to be really obscure if some extra modifications have to be added.

In order to have a more linear history, it is better to use git rebase, especially for small differences
(1 to 3 commits).

3.5 Communication with remote repository

Working with a remote repository introduces some subtleties and some extra good practices to
follow. Since this repository is likely to be shared between several users / several places, it is
important to ensure the good state and the coherency of the remote repository. An error realized
on this repository may be hard to correct and is likely to propagate quickly. It is thus important
to know what to do and what not to do.

Especially, the good use of the command git rebase requires a little practice, so if you are not
familiar with this command, please ask the maintainer of the code to realize the merge/rebase
operation for you.

14



D7.3 FP7-ICT-288533 ROBOHOW.COG January 31st, 2013

3.5.1 Recommended practices

Forbidden practices Briefly, it is forbidden to modify a commit that has already been pushed.
Such operations are likely to damage the remote repository and/or the repository of other users.
In particular, the following practices should be prohibited:

1. Forcing a push. Never use the command git push -f

2. Changing a commit after pushing it. Once pushed, it is too late to do a git commit

--amend (this commands allows to correct a commit by changing the commit message or
the modifications included).

3. Rebasing a branch already on the remote repository, and pushing again on this branch, ie:
git branch feature origin/feature # create the branch feature.

git checkout feature # change to the branch feature

git rebase master # change the order of commits

git push origin feature # Push the modifications to the remote branch (not

straightforward in most cases).

The rebase process should be done only at the very end of the life cycle of a branch. Rebasing
published branches can lead to duplicate commits in the shared repository. An example is
given in section 3.5.5.

The only exception to the rule 1 is when a file that should not been distributed has been pushed
(file containing a password, sensitive informations . . . ). In this case, you can destroy the wrong
commit by using push -f and/or contacting the main person in charge of the code to explain
what happened.

Good practices Before pushing on the remote repository, it is important to make sure that
all the required files are included, and that everything works well: clone your repository in a local
folder (e.g. /tmp/), then compile and test it. This simple manipulation reduces small mistakes
such as forgotten files.

3.5.2 Merging of branches

The life and death of a branch follows classicaly this scheme, illustrated by Fig. 3.2

1. Create the branch topic/feature based on the branch start
git pull origin start

git checkout -b topic/feature

2. Add some commits.

3. Occasionally, merge with the starting branch
git pull origin/start

4. At the very end (before the merge), rebase against the starting branch
git rebase origin/start

5. Do not forget to test the new branch.

15



D7.3 FP7-ICT-288533 ROBOHOW.COG January 31st, 2013

6. Go back to the starting branch and merge with the branch to be deleted.
git checkout start

git merge topic/feature

7. Delete the branch
# delete remote branch

git remote prune feature

git push origin :refs/heads/feature

# delete local branch

git branch -D feature

Creation and development of the feature branch

topic/feature

start

(topic/feature): git rebase start (4 - 5)

(start): git merge topic/feature
(6)

start

topic/feature

git 
m

erg
e

 g
it
 c

h
e
ck

o
u
t 
-b

g
it
 m

e
rg

e

(1)

(2)

(3) (3)

(topic/feature): git checkout start

Figure 3.2: Life and death of a feature branch.

3.5.3 Rebasing during branch update

The rebase appends when one wants to gather two branches, but also during the update of a
branch. When both the local and the remote repositories have been modified, the user has to
update his locate repository before being authorized to push his modifications. Using the command
git pull will implicitly realize a merge between the remote and the local branches if the pull is
not feed-forward.

To avoid creating knots in the history graph, prefer using git pull --rebase instead of git

pull. Note that to avoid (bad) surprises, you can do it in several steps:

1. git pull origin current branch # do the merge: you can then check that every-
thing went well.

2. git rebase origin/current branch # stack your modifications after those in the
remote repository.

Also, the following commands can be of use: git fetch checks if there are any modification of
the remote repository.
git pull -ff-only pulls the remote modifications only if the pull is feed-forward (else fails).

16



D7.3 FP7-ICT-288533 ROBOHOW.COG January 31st, 2013

3.5.4 Cleaning up

Do not forget to clean the dead branches of the remote repository from time to time.
# Delete tracking branch

git remote prune name of remote branch

# Pour supprimer une branche :

git push origin :refs/heads/name of remote branch

3.5.5 Warning on git rebase

As explained earlier, the git rebase is a powerful tool enabling to have a clean history, which make
the debugging easier. However, when you rebase a branch, it is likely that its shape will differ of
the shape of the corresponding branch on an remote repository. As a consequence, it is forbidden
to continue working with this remote branch, because of readability reasons.

The figure 3.3 illustrates the evolution of the local branch feature, that is rebased on the branch
start and merged again with the remote branch origin/feature. Before the rebase operation, the
remote repository and the local repository are identical. We realize a git rebase start on the branch
feature: the commits of the branch feature are now placed after the commits of the branch start
(Figure 3.3B). The content of the commits ”K” and ”L” are the same2, but their id are now
different (illustrated by the change of color).

Starting now, the remote branch and the local branch have a totally different structure. Hence, it
is not possible to push the branch feature on the remote branch (the push is not straightforward).
In order to push on the remote branch, it would be necessary to update your local repository, that
will create the tree illustrated in Figure 3.3C. As a result, the repository will contain the commits
”K” and ”L” twice, making the history unreadable.

Since it is no longer possible to communicate with the remote branch origin/feature, the best
solution would now be to create a new remote branch with a different name (origin/feature2) or
to merge the modification with the start branch (if it is the end of the branch cycle).

3.6 Structure of a GIT repository

The repository should follow the model proposed in 3. Here is a short summary:

Main permanent branches The repository should have two permanent branches:

• The master branch, that contains commits as small as possible. This branch gives the
detailed history of all the modification that have been realized on the repository.

• The stable branch, that contains released version only. They must work. The corresponding
commits may be huge, since they correspond to squashes of commits that have been pushed
in the develop branch.

2For simplification reasons, let’s assume that no conflict occurred during the rebase
3http://nvie.com/posts/a-successful-git-branching-model/

17



D7.3 FP7-ICT-288533 ROBOHOW.COG January 31st, 2013

c\ Branch Feature after git pull

b\ Branch Feature after git rebase start

a\ Initial state of the local and the remote repository

(start)

(feature)

(feature)

(feature)

Figure 3.3: Wrong behavior: pulling a branch after rebasing it leads to the duplication of the
history.

Extra permanent branches Other permanent branches can be created, corresponding to im-
portant demonstration or papers. Those repositories should be stored in the root of the git
repository.

Temporary branches Next to those branches, other branches can be created for several reasons:

• Develop new features. At the end of the test process, the commits must be rebased with
the release branches. Since the rebase can be tricky, please ask the code maintainer to do
it if you are not familiar with this command.

• Develop a hotfix. Once done, that are merged with both the master and the develop branch.

Bug fixes Bug fixes can be cherry-picked into the stable branch.

3.7 Working in community

Modifying an external package If you have write access to the remote repository, you can com-
mit your modification, push them in a new remote branch (git push origin patch/improvement),
ask for verification from the main developers that will do/authorize the merge with the master
branch.

If you do not have write access to the remote repository, commit the modification on your local
repository and create the corresponding patches using the command
git format-patch reference commit -o out folder

e.g. git format-patch origin/master -o patches #

This command will convert all the commits from the reference commit (here origin/master) to
the last one into applicable commits, and store them in the folder patches

18



D7.3 FP7-ICT-288533 ROBOHOW.COG January 31st, 2013

19



D7.3 FP7-ICT-288533 ROBOHOW.COG January 31st, 2013

Thus, the main developers will be able to directly apply your patches using the command git

apply patch

Do NOT do git diff > patch.txt This will create a file that is not directly usable, and the
developers will have to recode your modifications.

Using others’ packages Prefer working with stable branches or tagged versions, that are more
likely to be stable, and are better reference points.

3.8 Sources

General guidelines
https://wiki.duraspace.org/display/FCREPO/Git+Guidelines+and+Best+Practices

http://goo.gl/H5OnA

Commit message shape
http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

About the merge and the rebase
http://darwinweb.net/articles/the-case-for-git-rebase

http://jeffkreeftmeijer.com/2010/the-magical-and-not-harmful-rebase

http://nvie.com/posts/a-successful-git-branching-model

20



Chapter 4

ROS guidelines

The following rules are a copy of the slides created by Lorenz Mösenlechner 1.
The ROS version to be used is the ROS Groovy version (released in January 2013).
The ROS libraries are by default installed in the /opt/ros folder. Never edit those files. Prefer using
ROS overlays 2 instead, and use the tool support rosws to create, modify and manage overlays. Multiple
overlays with different versions can exist in parallel (e.g. one overlay for development, one for demos, one
for experimenting with bleeding edge code of other people. . . ).

4.1 ROS Overlays

Creation The creation of an overlay with rosws is realized as follows:
sudo apt-get install python-rosinstall

rosws init ˜/fuerte /opt/ros/fuerte # Create a new overlay

# Load the created file setup.bash in .bashrc (optional)

# echo "source ˜/fuerte/setup.bash" >> ˜/.bashrc

Add packages To add a local directory (e.g. a sandbox for experimental packages), do:
mkdir ˜/fuerte/sandbox

rosws set ˜/fuerte/sandbox

Installation Install packages from a rosinstall file:
rosws merge robohow-cram.rosinstall

rosws update

Install a (released) stack from source:
roslocate info turtlebot | rosws merge -

rosws update

The rosinstall files correspond to a YAML description of repositories to install. They are ideal for repository
snap shots and collaboration, and enable to specify versions, e.g:

- git:

local-name: cram pl

uri: http://code.in.tum.de/git/cram-pl.git

version: 0.1.5

- svn:

local-name: knowrob

uri: http://code.in.tum.de/pubsvn/knowrob/tags/latest

1https://robohow.org/_media/meetings/first-integration-workshop/ros-best-practices.pdf
2http://www.ros.org/wiki/fuerte/Installation/Overlays

21



D7.3 FP7-ICT-288533 ROBOHOW.COG January 31st, 2013

4.2 Naming Conventions

File names

• Package names are lower case.

• Packages and stacks must not contain dashes (”-”), only underscores (” ”).

• Messages, services and actions are named in camel case: geometry msgs/PoseStamped

• Do not use the word ”action” in an action definition (e.g.: Foo.action, not FooAction.action).

Topics, parameters, actions, services

• Nodes, topics, services, actions, parameters are all lower case with underscores as separator.

• Never use global names, always node local topic, service, action and parameter names.

• Use ros::NodeHandle handle(”˜”)
Bad Good
ros::NodeHandle nh; ros::NodeHandle nh(”˜”);
nh.advertise<Foo>(”foo”, 10); nh.advertise<Foo>(”foo”, 10);
Topics: → /foo Topics: → /node name/foo

4.3 Best Practices

Topics vs. Services vs. Actions

• Use topics to publish continuous streams of data, e.g. sensor data, continuous detection results. . .

• Use services only for short calculations.

• Use actions for all longer running processes, e.g. grasping, navigation, perception, . . .

ROS package

• ROS packages are cheap, create many.

• One package per functionality.

• Create separate packages that contain only messages, services and actions (separation of interface
and implementation).

• Keep your dependencies clean:

– only depend on what you need

– specify all dependencies

– do not use implicit dependencies

• Provide launch files.

• Group packages in stacks.

22



D7.3 FP7-ICT-288533 ROBOHOW.COG January 31st, 2013

Misc

• Use standard data types when possible.

• Do not define matrix data types for transforms but use geometry msgs/PoseStamped.

• Do not require a specific startup order for nodes: use waitForService, waitForTransform,
waitForServer, . . .

• Use ros::Time, ros::Duration and ros::Rate instead of system time.

• Do not use command line parameters but the ROS parameter server.

• Use rosconsole utilities for logging (ROS INFO, ROS DEBUG, . . . ).

• Never call cmake by hand in a package!

4.4 Third Party Libraries

• If possible, try to use libraries from Debian packages.

• Specify rosdep dependencies (tool for installing system packages).

• If you need to compile a library from source create a ROS wrapper package that downloads and
compiles the package.

• Do not use sudo in wrapper packages.

• Do not require manual system wide installations.

• Do not copy libraries into packages that need them.

4.5 Collaboration

• Provide a rosinstall file.

• Create a short Wiki page for each package

• Document what the node does.

• Document topics, services and actions that are required and provided.

• Document ROS parameters and their default values.

• Data can be recorded and exchanged using bag files.

4.6 Relase of the software

To realize a release of your software, it is mandatory to

• Test your software using willowgarage buildfarm (see http://www.ros.org/wiki/regression_

tests for more details).

• Use the ros release system http://www.ros.org/wiki/release. It will create the binary deb and
the source deb (repackaged tarball of the source) for you.

4.7 ROS Bag Files

Recording of a bag: rosbag record <topic> <topic> ...

Play a bag: rosbag play foo.bag

Play a bag using recorded time (important when stamped data and TF was recorded):
rosbag play --clock foo.bag

23



Chapter 5

Code guidelines

The integration in ROS is one possible objective of the code. As a result, the first guidelines proposed are
those of ROS. However, please be aware that this integration is not mandatory: one can want its code to
be used outside of the ROS framework and independently from any middleware.
Some general guidelines have already been given in the section 2. The following rules refine them for some
coding languages. Some pointers will be given for extra reading.

5.1 CPP guidelines

The cpp guidelines are those given by ROS. Hereafter are gathered some of the most important guidelines:

Convention The files are named in lower case, using underscores:

• C++ source files have a .cpp extension

• header files a .h extension

• template declaration a .hxx extension

• template definition a .t.cpp extension

Example:
my package/include/my package/foo bar.h

my package/src/foo bar.cpp

• Files defining a class have the name of the class.

• C++ classes/types are normally named in camel case:
class FooBar ... ;

• Functions are in camelCase, and their arguments are under scored
int exampleMethod(int example arg);

• Variables are under scored.

• Constants are all capital: GRAVITY FORCE.

Indentation The indentation should follow the bloc structure of the program.
Put only one instruction by line.

Variables Make your variable name explicit. Avoid one-letter variables, except for integral iterator vari-
ables (i, j, k). Avoid using tmp, aaaa or meaningless random sequence of letters. An exception is tolerated
if the notation come from a paper (matrix name etc).

24



D7.3 FP7-ICT-288533 ROBOHOW.COG January 31st, 2013

Namespace Use namespaces to scope your code and gather classes/methods that belong to a same
package or topic. Avoid defining global variables / functions. Define them in an appropriate namespace or
in an anonymous namespace in the cpp file to limit their effect.

Headers The headers must be protected by multiple inclusion by using #ifndef guards

#ifndef PACKAGE_PATH_FILE_H

#define PACKAGE_PATH_FILE_H

#endif //PACKAGE_PATH_FILE_H

Keep the headers light: use forward declaration.
Never add ”using namespaces” in headers

Class Attributes of class should have a final underscore to distinguish them from other variables. Forbid
the copy of classes when necessary by making the copy constructor private or making the class inherit from
boost::noncopyable
Do not abuse of the friendship.

Function Output arguments to methods / functions (i.e., variables that the function can modify) are
passed by pointer, not by reference.
Heavy object should be passed by const reference, except for small data (bool, char, int, double)
int exampleMethod(const FooThing & input, BarThing* output);

Limit the number of arguments of a function to 5.

Be a const addict Add const whenever it is possible: in the parameters of a function (input/output)
and for methods that must not modify the class attributes.
Return elements by const reference.
Do not return by const copy (it does not make sense).

const std::vector<double> & getValue() const; // Good

const std::vector<double> getValue() ; // Bad

Preprocessor macros should be avoided. Prefer inline functions, enums, and const variables to macros.

Debugging and testing Use assertions: assert or ROS ASSERT (for code on ROS).
Use Ros messages: ROS FATAL, ROS ERROR, ROS WARN, ROS INFO, ROS DEBUG.
Use callgrind, valgrind.

Exceptions Exceptions are the preferred error-reporting mechanism, as opposed to returning integer error
codes.
Always document what exceptions can be thrown by your package, on each function / method.
Do not throw exceptions from destructors.
Do not throw exceptions from callbacks that you do not invoke directly.

When your code can be interrupted by exceptions, you must ensure that resources you hold will be deallo-
cated when stack variables go out of scope. In particular, mutexes must be released, and heap-allocated
memory must be freed. Accomplish this safety by using smart pointers.

Forbidden practices Do NOT ignore warnings. If some warnings are way too verbose (e.g. boost on
windows), silent them one by one.

25



D7.3 FP7-ICT-288533 ROBOHOW.COG January 31st, 2013

Sources
Ros: http://www.ros.org/wiki/CppStyleGuide

google: google-styleguide.googlecode.com/svn/trunk/cppguide.xml

Forbidden Practices: http://www.strauss.za.com/sla/code_std.asp

5.2 Python

Follow the python guidelines given by ROS1.

Indentation Use 4 spaces per indentation level.

Parentheses should be use sparingly: do not use them in return statements or conditional statements
unless using parentheses for implied line continuation.

Imports should usually be on separate lines, e.g.:
Yes: import os

import sys

No: import sys, os

It’s okay to say this though:
from subprocess import Popen, PIPE

Note on compatibility Use the REAL types returned by the function you use.

1. Example 1: Python/C API2

Py ssize t PyDict Size(PyObject *p)

If you use this function you MUST use a Py ssize t and not an integer type chosen by you. Failing
to do so will create conversion errors on different platforms.

2. Example 2: Matrix Libraries and STL containers 3

A vector size method has the following API: size type size() const;

Which means that the size *MUST* be stored into a std::vector<T>::size type variable.

Package/Module Names All python code must be placed within a module namespace. ROS exports
your Python source directory to be on the path of any of your dependencies, so it is important not to
accidentally clobber someone else’s import. We strongly recommend that this module name be the same
as your ROS package name. There are two recommended code layouts:

1. Small modules with no msg/srvs
packagename

|- src/

|- packagename.py

|- scripts/

|- non-exported python files

1http://www.ros.org/wiki/PyStyleGuide
2http://docs.python.org/c-api/dict.html
3http://www.cplusplus.com/reference/stl/vector/

26



D7.3 FP7-ICT-288533 ROBOHOW.COG January 31st, 2013

2. Module with msgs/srvs
packagename

|- src/

|- packagename/

|- init .py

|- yourfiles.py

|- scripts/

|- non-exported python files

The more complicated layout for msg/srv files is required as the Python msg/srv generators will need to
generate files into your package’s namespace.
In the rare case that you cannot place your source code in src/ (e.g. thirdparty code), you can override the
Python export path of your package by editing your manifest.
See the next section for description of node files

Node Files In ROS, the name of a node type is the same as its executable name. Typically, for python
files, this means including #!/usr/bin/env python at the top of your main script, and having the main
script’s name identical to node’s name.
If your node is simple, this script may contain the entire code for it. Otherwise, the node file will likely do
an import packagename and invoke code there.
NOTE: we strive to keep ROS-specific code separate from reusable, generic code. The separation of ’node
files’ and files you place in src/packagename helps encourage this.

Sources
ros: http://www.ros.org/wiki/PyStyleGuide

google: http://google-styleguide.googlecode.com/svn/trunk/pyguide.html

5.3 XML: robot model

Indentation Use 2 spaces for indentation.

Robot model For now, the models of the robots are provided under the xml ros format. Ros Enhancement
Proposals are active for mobile robots4 and humanoid robots5 (that provides extra information on vision,
feet). These styles should be adopted to write the models of robots and humanoid robots (especially for
Romeo).

5.4 CMake

• Use cmake to generate projects.

• When dealing with a great number of sources files (> 8), list them in a SourcesLib.cmake. Otherwise
you can list them in a CMakeFiles.txt

• Use List(APPEND a ${b}) rather than set(a ${a} ${b})

4http://www.ros.org/reps/rep-0105.html
5http://www.ros.org/reps/rep-0120.html

27


