
ICT Call 7
ROBOHOW.COG
FP7-ICT-288533

Deliverable D3.1:

Documentation about the constraint-based framework

March 21, 2014

D3.1 FP7-ICT-288533 ROBOHOW.COG March 21, 2014

Project acronym: ROBOHOW.COG
Project full title: Web-enabled and Experience-based Cognitive Robots that

Learn Complex Everyday Manipulation Tasks

Work Package: WP 3
Document number: D3.1
Document title: Documentation about the constraint-based framework
Version: 2.0; full rewrite of Year 1 version

Delivery date: March 21, 2014
Nature: Report
Dissemination level: Public (PU)

Authors: Gianni Borghesan (KU Leuven)
Tinne De Laet (KU Leuven)
Dominick Vanthienen (KU Leuven)
Herman Bruyninckx (KU Leuven)

The research leading to these results has received funding from the European Union Seventh
Framework Programme FP7/2007-2013 under grant agreement no288533 ROBOHOW.COG.

2

Contents

1 The constraint-based approach to robot task specification and execution 5
1.1 Constraint-based optimization . 5
1.2 Constraint-based optimization for robot motion 6

2 Formalization into Domain-Specific Languages 8

3 Composing tasks and solver software architectures 10

4 Appendix 12

3

Summary

This document summarises and structures the experiences of working one year
with all partners to establish terminology, concepts, methodology, and work-flow to
help them to (i) make use of constraint-based task specification formalism to simplify
their robot programming work, and (ii) to consolidate their research results in the
form of (formally specifiable) constraints.1

The underlying version is a full rewrite of the version delivered after Year 1. The motivations for
this new version are two-fold: (i) the earlier version was rated by the reviewers as not sufficiently
clear and concise, and (ii) some of the required developments took longer than expected and have
only crystalized during Year 2.

An important practical evolution is that the Stack of Task has been selected, early in Year 2,
as the common solver software framework. That means that the “iTaSC solver” will not appear
in our communications anymore. CNRS and KUL have already realised common developments
on the Stack of Task software, such as refactoring of some code, and adding the feature of
implicit constraints (e.g., the implicit geometric constraint of “keeping frames parallel”). This
co-development is continuing also in Year 3.

Chapter 1 introduces constraint-based motion specification, in the generic formulation that (i)
unifies the different prior art with which the partners entered the RoboHow project, and (ii)
presents a systematic architectural approach to connect constraint-based motion specification to
knowledge bases and reasoning.

Chapter 2 reports on the work that is done to formalize the motion specification into symbolic
representations (“Domain Specific Languages”). This effort of creating DSLs has multiple ob-
jectives: making the semantics more clear, making it easier for application developers to specify
tasks, and making it easier to connect to reasoners.

1As described in Annex 1 of the Grant Agreement.

4

Chapter 1
The constraint-based approach to robot
task specification and execution

1.1 Constraint-based optimization
This Section introduces generic terminology of constraint-based optimization.

Meta model. Here is the mathematical formulation of a constraint-based optimization, in a
domain-independent way:

task state & domain X ∈ D
desired state Xd

system state & domain q ∈ Q
objective function minq f(X)

equality constraints g(X) = 0
inequality constraints h(X) ≤ 0

tolerances d(X, Xd) ≤ A

solver algorithm to compute q

Objective functions, as well as constraints, can be composed in two complementary ways:

• weights: the composite objective function or constraint is the weighted sum of a set of
objective functions or constraints;

• priorities: some subset of objective functions or constraints are optimized for before another
subset. Multiple levels of prioritization can occur.

The type of the functions f, g and h determine the complexity of the problem, because very
different solver algorithms can be required for specific combinations of them.
The function d(X, Xd) is a distance function in the state space of the problem, that one needs to
specify to determine when the solver of the optimization problem has reached the desired optimal
state in a “sufficiently good” way.

Domain model. Applying the generic mathematical formulation in a particular application domain
requires the filling in of:

• the types for f , X, q,. . . for that particular domain;

5

D3.1 FP7-ICT-288533 ROBOHOW.COG March 21, 2014

• the particular type of solvers that fit the specificities of the application.

The following Section will do this for the domain of robot motion, and for the type of tasks that
the RoboHow project needs to consider.

Instances. Each specific application then makes the above-mentioned domain model complete
by further filling in:

• parameter values for f , X,. . .

• solver implementation(s).

Domain-independent frameworks exist to specify (and solve) constraint-optimization problems,
e.g., CasADi (https://github.com/casadi/casadi/wiki). There is a continuous tension be-
tween using such domain-independent frameworks (because developers then have to learn only
one) on the one hand, and, on the other hand, domain-specific versions (that promise the advan-
tage of having, both, more clear semantics for a particular application domain, and more efficient
solvers). In RoboHow, we clearly go in the second direction, for both mentioned reasons.

1.2 Constraint-based optimization for robot motion
As mentioned in the previous Section, applying constraint-based optimization to the domain of
robot motions requires further specification of:

• task state & domain. The RoboHow tasks are “robot motions”, this means that “end-
effectors” and “links” of robots have to be moved towards specific “target locations”, with
specific “motion dynamics”. The project focus on “knowledge driven” tasks allows to bring
strong structure in the domain, in that constraints and objective functions come from five
different “sources”:

– the motion capabilities of the robot devices: each robot has limits in its workspace,
actuator power, accuracy, rigidity, etc.

– the requirements from the tasks: baking pancakes can only be done successfully if a
recipe is followed, etc.

– the affordances of the objects that the robot manipulates, or navigates in: pieces
of fruit must be handled differently than metal utensils; oven plates should not be
touched; etc.

– the properties of the environment in which the task is executed: risk involved in hitting
objects, or moving through specific areas, etc.

– common knowledge: when grippers are opened, the graspef object might not move
together with the robot anymore; kitchens have doors, stoves,. . . ; etc.

Identifying the sources of constraints, objective functions and tolerances helps in defining
the knowledge contexts required to reason about motion tasks.

• desired state: these are typically “mechanical”: locations, positions, orientations, interaction
forces, etc.

6

https://github.com/casadi/casadi/wiki

D3.1 FP7-ICT-288533 ROBOHOW.COG March 21, 2014

• system state & domain: depending on the type of robot controller that is available, the
constraint optimizer must compute joint positions, joint velocities, joint torques, or motor
currents, to be given to the physical actuator system of the robot. In general, each robot
system comes with a fixed and limited choice in its low level control law, so often the
outcome of the constraint optimization is “post-processed”, in the sense that it only provides
the desired motion trajectory, and not the actual actuation directly.

• objective functions, constraints, tolerances. The sources of these have already been de-
scribed above, but here we add some complementary requirements:

– sequencing : even the simplest robot tasks do not consist of one single constrained
optimization problem, but requires complex sequences of such sub-tasks. Hence, the
constraint-based optimization context that RoboHow is confronted with is that of so-
called hybrid event systems: also the transitions between the optimization problems
in different sub-tasks must be dealt with, and preferably in an “optimal” way.
Two complementary mechanisms are introduced to specificy and execute the required
sequencing: (i) Finite State Machines, and (ii) Scheduling.
A Finite State Machine (“FSM”) defines in each of its states what the optimization
problem is to be solved in that state, as well as which variables in the system must
be monitored for reaching certain thresholds that indicate that a transition to another
state is required. Defining the FSMs requires a lot of knowledge, which fits very nicely
in the RoboHow context.
A Schedule is a data structure, or an algorithm, that defines which optimization solvers
to trigger at each moment over time. Typically, they “run” at a much higher rate than
the FSMs, for example to select the step gait of a walking humanoid robot, or the
execution of an estimator required to provide the values of some parameters in the
optimization problem.

– implicit vs explicit. An explicit constraint has the form y = f(x), and has the advantage
that its computation is typically straightforward. An implicit constraint has the form
f(x, y) = 0 and can be more difficult to evaluate since, both, x and y could be “input”
or “output” and this can even change during the task.

• solvers: RoboHow is coping with all of the above-mentioned aspects, which means that it
can cope with a very large variation in tasks, and in intelligent execution of tasks based
on sensor information and knowledge sources. In addition, even within the same project,
several solver implementations are being developed in parallel. We can identify which use
cases are best solved by which solver, and which and how solvers can be combined.
This flexibility, however, comes at a significant cost: the efforts to design and implement
the software for the solvers are becoming huge, at the risk of going beyond what one single
human can still understand, analyse, document, and synthesize.

7

Chapter 2
Formalization into Domain-Specific Lan-
guages

This Chapter reports on the work that is done to formalize the motion specification into symbolic
representations (“Domain Specific Languages”). This effort of creating DSLs has multiple ob-
jectives: making the semantics more clear, making it easier for application developers to specify
tasks, and making it easier to connect to reasoners.
The main content of this Chapter is provided in an Appendix, which represents the draft of a
journal paper that is under construction, exactly for the above-mentioned purposes of describing
how and why DSLs have their place in modern, knowledge-driven robot task specification and
execution systems. The abstract of this paper is repeated here, for convenience.

The problem of robotic task definition and execution got its first methodological solution in the
formalism of Mason, in 1981, that tackles the problem by defining as setpoint constraints the
position, velocity, and/or forces expressed in one particular task frame, and for a 6-DOF robot.
Later extensions generalized this approach to

• multiple frames,

• redundant robots,

• constraints in other sensor spaces such as cameras, and

• tracking trajectory constraints.

This work describes further extensions to

• implicit expressions of constraints between geometric entities (orthogonality, parallelism,
distance, angle, . . .) in place of explicit setpoint constraints,

• a systematic composition of constraints,

• runtime monitoring of all constraints (that allows for runtime sequencing of constraint sets
via, for example, a Finite State Machine (FSM)), and

• formal task descriptions, that can be used by symbolic reasoners to plan and analyses tasks.

8

D3.1 FP7-ICT-288533 ROBOHOW.COG March 21, 2014

This means that tasks are seen as ordered groups of constraints to be realised by the robot’s
motion controller, with, as optional specification, a possible different set of geometric expressions
that measures outputs that are not controlled, but that must be monitored because they are
relevant to the task evolution. Those monitored expressions raise events that trigger the FSM to
make a decision to switch to another task, that is, another ordered group of constraints to execute
and monitor.
For all these task specification elements, formal language definitions are introduced, with the
aim of providing clear abstractions from the concrete capabilities (hardware as well as control
behaviour) of the executing robot platforms. The influence of each specific platform can be
added, also in the form of a set of (not task-related) constraints (such as kinematic and actuator
limits), to satisfy by the robot’s task controller.
When both task and platform constraints are expressed in formal languages with grounded seman-
tics, it will become possible to reason about particular robot-task combinations and evaluate the
feasibility of a particular task before trying to execute it.

9

Chapter 3
Composing tasks and solver software ar-
chitectures

The DSL efforts mentioned in the previous Chapter, have mainly been performed at KUL, where a
complete overhaul of its “iTaSC” formalism is under construction. This effort is not only targeted
towards the specification of the languages only, but also towards the better integration with overall
application and software architectures. For the latter, the concept of the System Composition
Pattern has been developed, and several parallel efforts have started to apply the pattern in
several use cases, and to adapt the software implementations to support it, in a structured way.

One of the major “lessons learned” from Year 1 was the lack of a sufficiently clear, flexible and
structured methodology to support the specification and execution of more and more complex
constraint-based motion tasks. This problem has been “solved” by the introduction of the System
Composition Pattern, of Fig. 3.1. This pattern works with any kind of “components” (ROS nodes,
Orocos components, or function blocks, but only the latter can really exploit the hierarchical
composition structure that is the key strength of this Pattern.

The System Composition Pattern provides a methodological approach to make complex tasks and
systems, by separating explicitly the responsibilities and interactions of: the Composer (to build
the system out of connected components), the Coordinator (for the supervision of the system’s
acitivities), the Computational components (that provide the useful task functionalities, i.c., the
constraint-based motion), the Configurators (to put the right “magic numbers” into the Compu-
tational components), the Monitor (to check whether the online execution realises all the specified
constraints and objective functions, and to fire events for the Coordinator if that is not the case
anymore), and the Scheduler (to trigger the right components at the right time).

In the context of RoboHow, the separation of concerns and responsibilities that the System Com-
position Pattern advocates and supports, brings the following expected added value: each of the
concerns and responsibilities requires its own specific set of knowledge and expertise “to get it
right”, which implies that it can be supported by a specific sub-set of all the RoboHow knowledge
base(s) and reasoning infrastructure. In other words, specialising the roles of the software agents
allows specialising the context in which knowledge can and must be integrated; such specialisation
will, hopefully, reduce the complexity of creating the knowledge bases, implementing the reasoners,
implementing the on-line query components, and understanding the workings of the overall system.

10

D3.1 FP7-ICT-288533 ROBOHOW.COG March 21, 2014

functional
Computation

constraint
flow

monitor Computation

Coordinator

constraint
flow

Configurator

events

functional
Computation

constraint
flow

monitor Computation

Coordinator

constraint
flow

Configurator

events

d
a
ta

tra
n

sa
ctio

n
s

monitor Computation

Coordinator
events

composite Component

Configurator

Composer Composer

Scheduler
Scheduler

Scheduler

Composer

Figure 3.1: The System Composition Pattern.

The Pattern has been tested in multiple courses and projects, in the European PhD School in
robotics1, and is underlying several new implementation efforts, such as the microblx project.2
However, the (re)design and (re)implementation efforts required to bring all RoboHow motion
specification and control software into the new architectural pattern is huge, and hence still un-
finished. Many more efforts will be dedicated to this task in Year 2.

However, it is not just a matter of doing the implementations: the suggested Pattern’s advantages
have become apparent via the above-mentioned test cases, but switching from a “ROS node”-
centric architectural thinking to a “hieararchical composition”-driven thinking requires a lot of
retraining. It is also not yet 100% clear which parts of the whole RoboHow software system will
really benefit from such a transition.

1http://www.phdschoolinrobotics.eu/
2https://github.com/kmarkus/microblx

11

http://www.phdschoolinrobotics.eu/
https://github.com/kmarkus/microblx

Chapter 4
Appendix

Draft paper: Introducing geometric constraint expressions into robot constrained motion spec-
ification and control ; Gianni Borghesan, Herman Bruyninckx, KU Leuven, Belgium, 21 March
2014.

12

	The constraint-based approach to robot task specification and execution
	Constraint-based optimization
	Constraint-based optimization for robot motion

	Formalization into Domain-Specific Languages
	Composing tasks and solver software architectures
	Appendix

