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Summary

In this deliverable, we identify key issues in human everyday action and how they relate to robotics.
Action control as used for such everyday manipulation tasks are remarkably different than robotic
action control for industrial robotics and human action control in psychology labs.

The deliverable consists of two chapters. The first chapter is based on a journal paper, and dis-
cusses how psychological research into everyday action can inform roboticists.

The second chapter is based on a book chapter. This chapter focuses on the relationship between
the field of cognitive robotics and cognitive psychology. The field of cognitive robotics successfully
uses several concepts from cognitive psychology, and is an example of how psychological research
can be valuable in robotics.
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Chapter 1
Everyday human action, and what roboti-
cists should know

This chapter focuses on the issues that arise when generalizing observations made in experimental
psychology labs to the real world, and what this implies for robotics. Whereas simple responses
to unambiguous stimuli have been the subject of study for more than a century, more complex
actions have remained elusive for cognitive scientists. However, we believe that research in human
action control has learned enough to inform (cognitive) robotics, and reach out with four research
areas that may prove to be valuable.

First, the gap between symbolic planning and subsymbolic sensorimotor information needs to be
bridged. Everyday, sequential, action in humans does not only consist of determining the optimal
order of subsequences, but also shows sensorimotor context effects that optimize execution of the
complete sequence.

Second, feedforward and feedback mechanisms for motor control need to be integrated to make
the most efficient use of available information. In human action, unnecessary parameters are omit-
ted from the feedforward plan to be retrieved from the environment online. This ensures speedy
action onset and provides for adaptive behavior.

Third, everyday action can often be viewed as hierarchical in nature. For example, in the pancake
making example, the subaction flip the pancake could consist of subactions grab the spatula, move
the spatula under the pancake, and flip spatula. However, the representation of such hierarchical
information in the human brain is unclear, and the subject of active investigation. We have made
progress in unraveling this problem in the form of a cognitive model based on the LEABRA model.

Last, human action is highly contextualized. The same subaction can consist of different sub-
actions based on its position in the sequence or purpose. The presence and activation of goal
representation may be necessary to produce optimal action plans.

This chapter is based on the following publication that has been published in Frontiers in Neuro-
robotics:

de Kleijn, R., Kachergis, G., and Hommel, B. (2014). Everyday robotic action: Lessons
from human action control. Frontiers in Neurorobotics, 8:13.
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Robots are increasingly capable of performing everyday human activities such as cooking,
cleaning, and doing the laundry. This requires the real-time planning and execution of
complex, temporally extended sequential actions under high degrees of uncertainty, which
provides many challenges to traditional approaches to robot action control. We argue that
important lessons in this respect can be learned from research on human action control.
We provide a brief overview of available psychological insights into this issue and focus on
four principles that we think could be particularly beneficial for robot control: the integration
of symbolic and subsymbolic planning of action sequences, the integration of feedforward
and feedback control, the clustering of complex actions into subcomponents, and the
contextualization of action-control structures through goal representations.
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INTRODUCTION
In a relatively short time span, the discipline of robotics has
advanced from producing industrial non-autonomous, repetitive
machines to semi-autonomous agents that should be able to func-
tion in a dynamic, human-driven world. Simple examples include
automatic vacuum cleaners such as Roombas, but more flexible
and autonomous humanoid robots are currently under devel-
opment (e.g., the RoboHow.Cog project: www.robohow.eu). As
robots perform more and more everyday human activities such as
household chores, interacting with humans, and thereby almost
becoming citizens in our societies, we believe that psychologists
can provide relevant knowledge about human behavior that is
generalizable to robots.

Like early approaches to artificial intelligence (AI), traditional
cognitive psychology considers behavior (of biological or artifi-
cial agents) to emerge from discrete series of cognitive operations
that take information from the environment (registered by sen-
sory organs or artificial sensors), process this information in more
or less complex ways, and eventually manipulate something in
the environment as a result of this processing. In psychology,
this discrete, serial processing model of cognition has been suc-
cessful in explaining various psychological phenomena, but for
one reason or another most research has focused on the early and
middle stages of this process, leaving action and motor control far
behind. Indeed, psychology as an autonomous science has histori-
cally shown an impressive neglect of the study of action and motor
control, to the extent that it has even been called the “Cinderella
of psychology” (Rosenbaum, 2005).

Fortunately, however, more recent approaches have empha-
sized the role of action not only as an output function but as
a precondition and basic ingredient of human cognition (e.g.,
Clark, 1997; Hommel et al., 2001; O’Regan and Noe, 2001). These
recent approaches have criticized the traditional sequential-stage
account of human behavior for analyzing action as a consequence

of stimuli. They argue that action is more aptly characterized
as people’s means to produce stimuli (desired outcomes), rather
than as a means to respond to stimuli (Hommel, 2009). More-
over, actions are more than mere ballistic outputs: they are events
that unfold in time and that must be structured in such a way
that their outcome satisfies current needs and goals. Consider, for
example, the act of tea-making, which consists of a number of
components: (1) boiling water, (2) putting a tea bag in a teapot,
(3) pouring the boiling water in the teapot, and (4) pouring the
tea in one or more cups. Executing these different components in
such a way that the intended goal is eventually achieved requires
planning. In the following, we will provide a brief overview of
available psychological insights into how this planning works in
humans, and how these insights might inform the creation of
robotic everyday action systems. At the moment, although robot
actions mimic human action, the control systems are in fact
quite different. We will confine our discussion to four principles
that we think could be particularly beneficial for robot control:
the integration of symbolic and subsymbolic planning of action
sequences, the integration of feedforward and feedback con-
trol, the clustering of complex actions into subcomponents, and
the contextualization of action-control structures through goal
representations.

INTEGRATING SYMBOLIC AND SUBSYMBOLIC PLANNING
In contrast to the ballistic, single-step actions that participants
in laboratory experiments often carry out, everyday action com-
monly consists of multiple components, as in the tea-making
example. In AI and robotics, multi-component actions are com-
monly planned at a symbolic level, with each action component
being represented by an arbitrary symbol or function. The STRIPS
(Stanford Research Institute Problem Solver) planner (Fikes and
Nilsson, 1971) is a famous example: it serves to translate an ini-
tial state into an intended goal state by determining the subset of
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actions (defined as a symbolically described relation between sets
of pre- and post-conditions) needed to do so. The format of all
representations involved is symbolic allowing all goals and actions
to be represented in basically the same way, although they can be
arbitrarily linked to subsymbolic trigger states. This uniformity
allows for a very efficient planning process, as action components
can be easily manipulated and exchanged until the entire plan is
optimal.

Symbolic action planning of this sort is consistent with early
models of human action planning, which typically connected
underspecified symbolic action representations with subsymbolic
trigger states that took care of timing. For instance, Margaret
Washburn considered that later action components might be trig-
gered by the perception of the execution of the previous one:
“If the necessary stimulus for pronouncing the last syllable of
a series were the muscular contractions produced in pronounc-
ing the next to the last syllable, then the proper sequence of
movements would be insured” (Washburn, 1916, p. 9). Along
the same lines, James (1890) suggested a serial chaining model,
according to which each action component is triggered by the
perception of the sensory feedback produced by the previous com-
ponent. Accordingly, learners will create associations linking the
motor patterns and their sensory consequences in a chain-like
fashion.

As more studies were conducted, however, it was found that
chaining accounts of sequential behavior cannot account for
several empirical observations. In a seminal paper, the neurophys-
iologist Lashley (1951) pointed out that the serial chaining models
of the time were not adequate, because: (1) movements can still be
executed if sensory feedback is impaired; (2) some movements are
executed too quickly to have time to process feedback from pre-
ceding actions, and (3) errors in behavior suggest the presence of
predetermined action plans (Rosenbaum et al., 2007). Rosenbaum
et al. (2007) added further arguments against a chaining account
of sequential action. For example, the time needed to initiate an
action is a function of its complexity (Henry and Rogers, 1960;
Klapp, 1977; Rosenbaum, 1987), suggesting that the agent antic-
ipates later action components before beginning to execute the
first.

Along the same lines, Cohen and Rosenbaum (2004); [for
another good example see Van der Wel and Rosenbaum (2007)]
had participants grasp a vertical cylinder placed on a platform
and move it to another platform that was either higher or lower
than the initial location. The researchers determined the verti-
cal location of the grasp, and found that the grasp location was
dependent on the expected end state. More specifically, subjects
tended to choose a lower grasp location when bringing the cylin-
der to a higher position, and vice versa. Likewise, when subjects
were asked to move the cylinder back to its starting position,
they tended to grasp it in the location where they grasped it
before. This end-state comfort effect suggests that people antici-
pate the position that they will assume after the action has been
completed.

The same conclusion is suggested by studies on context effects
in speech production. For example, people round their lips before
pronouncing the t in the word tulip, in anticipation of pronounc-
ing the u later in the sequence (Daniloff and Moll, 1968; Bell-Berti

and Harris, 1979; Fowler, 1980; Rosenbaum, 1991). This does not
seem to be a purely epiphenomenal property of human action; one
can easily see how this produces more efficient, smoother speech,
and a more careful use of the human speech-production “hard-
ware.” An analogous action blending effect occurs when people
reach for objects: people adaptively flex their fingers while moving
the hand toward an object (Jeannerod et al., 1995), and has been
observed to develop when sequentially moving a cursor through
a learned series of stimuli (Kachergis et al., under review). Com-
pared to typical step-wise robotic motion, this action blending
seems to be more efficient, using predictive motion to minimize
the time and energy required to achieve the goal.

Further insights into human sequential action planning come
from Gentner et al. (1980), who conducted a photographic study
of a skilled typist. Using high-speed photography, they analyzed
the hand movements of a 90-wpm typist, and found that the typ-
ist’s hands were moving continuously, with fingers starting to
move toward a destination before several preceding characters
were to be typed. In fact, for 96% of all keystrokes, movement
was initiated on average 137 ms before the preceding keystroke
was completed, and for 21% the movement was initiated before
the preceding keystroke was initiated. Larochelle (1984) presents
a similar but more extensive study, analyzing the typing of four
professional typists while they typed either words or non-words,
of which half were typed with one hand, and the other half with
two hands. In more than half of the trials the movement was initi-
ated before completion of the previous keystroke for two-handed
trials.

These interactions between early and later sequence elements
cast doubt on a simple chaining theory of sequential action.
Rosenbaum et al. (2007) interpreted these findings as evidence
that sensory feedback is not a necessary component for action
sequencing, in keeping with the conclusion of Lashley (1951).
They argued that “the state of the nervous system can predispose
the actor to behave in particular ways in the future,” (p. 526),
or, there are action plans for some behaviors. And yet, studies on
spontaneous speech repair (e.g., Nakatani and Hirschberg, 1994)
also show that people are very fast in fixing errors in early compo-
nents of a word or sentence, much too fast to assume that action
outcomes are evaluated only after entire sequences are completed.
This means that action planning cannot be exclusively feedfor-
ward, as Lashley (1951) seemed to suggest, but must include
several layers of processing, with lower levels continuously check-
ing whether the current action component proceeds as expected.
In other words, action planning must be a temporally extended
process in which abstract representations to some extent provide
abstract goal descriptions, which must be integrated with lower-
level subsymbolic representations controlling sensorimotor loops.
The existence of subsymbolic sensorimotor representations would
account for context and anticipation effects, as described above. In
the more general field of knowledge representation, some authors
even take it one step further, positing that subsymbolic, senso-
rimotor representations are necessary for higher-level symbolic
cognition. For example, Barsalou’s (1993,1999) perceptual symbol
systems theory defines cognition as embedded in the world, stating
that agents form grounded models via perception and interaction
with their environments. With these models, the representation of
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abstract concepts can be implemented using grounded perceptual
symbols. The empirical support for theories like these motivate
the notion that both symbolic and subsymbolic representations
can (and should) work together to account for human cognition.

A good example for an action planning model that includes
one symbolic and one subsymbolic level is the typewriting model
suggested by Rumelhart and Norman (1982). To control typ-
ing the word “WORD,” say, the model would assume that the
symbolic/“semantic” representation WORD would activate motor
units controlling the finger movements required to type “W,” “O,”
“R,” and“D” in parallel. This parallel activation allows for crosstalk
between the different units, which would account for context
effects and anticipations. At the same time, the activated units
are prevented from firing prematurely by means of a forward-
inhibition structure. That is, each unit is inhibiting all following
units in the sequence (so that the“W”unit inhibits the“O,”“R,”and
“D” units, the “O” unit the “R” and “D” units, and the “R” the “D”
unit) and release that inhibition only once they are executed. The
dynamics of these inhibition and release processes automatically
produce the necessary sequence. It is thought that such activa-
tion and inhibition processes play a role even in young infants
(Verschoor et al., unpublished). Immediate feedback, though not
explicitly addressed by Rumelhart and Norman (1982), could
serve to repair the actions controlled by particular units, but
the feedback would not be needed to produce the sequence – a
major advantage over chaining models. For an overview of similar
models and other action domains, see Logan and Crump (2011).

The main lesson for robotic everyday action control is
that purely symbolic planning may be too crude and context-
insensitive to allow for smooth and efficient multi-component
actions. Introducing multiple levels of action planning and action
control may complicate the engineering considerably, but it is also
likely to make robot action more flexible and robust – and less
“robotic” to the eye of the user.

INTEGRATING FEEDFORWARD AND FEEDBACK
MECHANISMS
In perfectly predictable environments such as industrial construc-
tion halls, there is hardly any need for feedback mechanisms.
Indeed, early industrial robots, such as Unimate, could rely on
fully preprogrammed feedforward control for repetitive multi-
component actions such as picking up and manipulating objects
(Hägele et al., 2008). However, real-life environments are much
too unpredictable to allow for purely feedforward control. Con-
sidering that purely feedback-based control is often much too slow
to allow for real-life human action, it is unsurprising that human
action control seeks for an optimal integration of feedforward and
feedback mechanisms.

One of the earliest studies into feedforward planning is Henry
and Rogers (1960), which compared reaction times of partici-
pants performing a simple finger movement to reaction times of
a moderately complex arm movement (reaching and grasping) in
response to a stimulus. The authors found that participants per-
forming the more complex movement showed a 20% increase in
reaction time, with as much as a 25% increase for even more com-
plex movement. This suggests the existence of feedforward action
planning prior to action execution.

Linguistic studies have shown a similar effect. Eriksen et al.
(1970) had participants read aloud two-digit numbers consisting
of a varying number of syllables. Longer numbers were shown to
have a longer onset delay. In order to account for the possibility
that factors other than motor planning play a role, participants
were given the same task with a delay between stimulus onset
and vocalization. Here, the effect disappeared, again providing
evidence for pre-execution action plan formation.

However, while it may be tempting to conclude that an
action plan is formed completely before action onset, incremen-
tal approaches to sequential action posit that this is not the
case. Palmer and Pfordresher (2003) argued that it is unlikely
for actors to have access to all elements in a long sequence,
as this would place unnecessarily large demands on memory –
just think of a conductor starting to conduct a 4-h Wagner
opera. Instead, planning and execution co-occur in time, limit-
ing access to sequence elements that appeared much earlier or
that lie far in the future. Evidence for this was indeed found by
Sternberg et al. (1988), in which six participants prepared and
produced sequences of mono- or tri-syllabic words. In addition to
the length effect discussed above, preparation times were found
to increase with length of the word sequence until approach-
ing asymptote (which was 10.3 ± 0.6 words for sequences of
mono-syllabic words and 6.4 ± 0.9 words for tri-syllabic words).
This suggests that plan formation and execution occur simulta-
neously, at least for longer sequences of actions, with a limited
capacity.

However, feedforward mechanisms alone cannot account for
such complex action as our tea-making example. A complete feed-
forward program would need to incorporate numerous unknown
parameters, such as the exact location and physical properties
(e.g., weight) of all necessary objects. The prior unavailability
of such parameters is not the only reason feedback mechanisms
might be helpful. Some parameters might be possible to include
in a feedforward program, but would simply be more efficient
or optimal if filled in online, such as grip strength. Even if all
this information were available, an actor still needs to be able to
correct possible – sometimes inevitable – perturbations in action
execution.

Indeed, it seems that the presence of uncertainty (i.e., unavail-
ability of necessary parameters) increases the importance of
feedback mechanisms. Saunders and Vijayakumar (2011) fitted
participants with a prosthetic hand that could provide vibro-
tactile feedback. Using this prosthetic hand, they were asked
to manipulate objects of different weights. Manipulating both
feedforward uncertainty by adding an unpredictable delay in the
prosthetic hand and feedback information by manipulating vibro-
tactile feedback, they found that performance decreased when
feedback was removed in situations with feedforward uncertainty.
This illustrates that human action emerges from the interaction of
feedforward and feedback mechanisms.

Integrating feedforward and feedback mechanisms holds the
promise to get the best from two worlds. Feedforward mecha-
nisms are likely to determine the necessary action components
and pre-load at least some of them before initiating the action
(Henry and Rogers, 1960), and to selectively tune attention to
stimuli and stimulus dimensions that are relevant for the task
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(Hommel, 2010). Feedback processes, in turn, provide excellent
accuracy – often at the cost of speed (Seidler et al., 2004). These
strengths and weaknesses have motivated hybrid models claim-
ing that feedforward mechanisms provide the skeleton of action
plans which leave open slots for parameters provided by feed-
back processes (Schmidt, 1975; Glover, 2004; Hommel, 2010).
A particularly good example of this kind of interaction is pro-
vided by the observations of Goodale et al. (1986). In a clever
experiment, participants were asked to rest their hand on a plat-
form and point to a visual target presented at a random location
on an imaginary line in their right visual field. The partici-
pants were not told that in half of the trials the target changed
location during the first saccade. The authors found that par-
ticipants would successfully point to the target on these trials
without even being aware of the location change, and without
additional delay. As feedforward programming is thought to take
time, a fast and online feedback mechanism of which partici-
pants are unaware has to be responsible for this finding. After
this study showing online adaptation of hand velocity, Prablanc
and Martin (1992) found that these results generalize to two
dimensions. Using stimuli presented on a screen, it was found
that both the velocity and trajectory of the hand were adjusted
online. This demonstrates that action is the result of a pre-
programmed action plan (the initial movement of the hand)
combined with online adaptation to reach goal requirements.
Interestingly, such a division of labor fits well with the architec-
ture of the human brain, which includes both a slow, cognitively
penetrated ventral route from perception to action and a fast dor-
sal sensorimotor loop (for a broader overview, see Milner and
Goodale, 1995).

It is clear that both feedforward and feedback mechanisms
are responsible for producing complex action, but there remain
a number of unanswered questions. Are feedforward processes
always responsible for certain actions? How are these plans learned,
and how do people know when to apply them? How does feedback
on a lower level result in action re-planning on a higher level, and
does this require conscious intervention? What is the division of
labor between feedback and feedforward mechanisms? How fluid
is it – how hierarchical?

We know that with practice, the roles of feedback and feedfor-
ward processes change. In a standard rapid aimed limb movement
paradigm, participants are asked to perform a manual action in
order to reach a target. During such tasks, the response can be
regarded as having two elements: (1) a ballistic primary movement,
thought to be controlled by a feedforward mechanism, and (2) a
secondary, corrective movement, thought to be caused by a feed-
back mechanism. Pratt and Abrams (1996) used such a paradigm
to investigate the effect of practice on the weight of primary and
secondary movements. Participants were asked to repeatedly move
a visual cursor to a target location using wrist rotation. With
more practice, the percentage of time spent in the first movement
increased, while time spent in the second movement decreased.
As the first movement is feedforward-controlled, this suggests that
practice reduces the need of feedback control, as the feedforward
process becomes more accurate. But will this learning general-
ize to new situations with similar action requirements, and is it
long-lasting?

To investigate the relationship between practice and feedback
control, Proteau et al. (1987) had participants practice an aim-
ing task on either 200 or 2000 trials and found that, when visual
feedback was taken away, participants who had more practice
were more impaired by the removal of feedback. This is not
what one would expect if practice simply shifts control to feed-
forward processes. Subsequent research has shown that, with
practice, higher peak velocities are reached in the early phase of
movement, thereby leaving more time for corrective submove-
ments based on feedback. Thus, instead of a shift from feedback
control to feedforward control, feedback processes seem to be opti-
mized as a result of practice (Proteau et al., 1987; Khan et al., 1998;
Elliott et al., 2010).

While the first generation of robots and other intelligent sys-
tems had a strong preference for feedforward control, not in the
least because of the rather predictable environments they were
implemented in, some modern systems rely heavily on feedback
control to perform actions – especially humanoid systems oper-
ating in real-world scenarios. This is likely to work as long as
action production in such robots is slower than the feedback
loops informing them (Plooij et al., 2013), but progress in action
mechanics is likely to make hybrid feedforward/feedback systems
an attractive alternative in the near future.

HIERARCHICAL ACTION REPRESENTATION
Human actions can often be described in a hierarchical fashion:
“Going on vacation”implies action such as“packing my bags,”“get-
ting the car,” “loading it,” “driving down to city X,” and so forth
and so on. Many authors have taken that to imply that action
control is hierarchical as well. According to Lashley (1951), only
a hierarchical organization of actions and action plans can pro-
vide the opportunity to have the same motor acts acquire different
meanings, depending on the context in which the motor act is
performed. In Miller et al. (1960) seminal book, action plans are
even hierarchical by definition: “A Plan is any hierarchical process
in the organism that can control the order in which a sequence
of operations is to be performed” (p. 16). And yet, while it is
certainly uncontroversial that it is possible to describe actions as
hierarchical, this need not have any implication for the cognitive
organization of actions. As Badre (2008) argues,“the fact that a task
can be represented hierarchically does not require that the action
system itself consist of structurally distinct processing levels”
(p. 193; see also Klein, 1983). Moreover, it is not always clear what
authors mean if they say that actions are organized in a hierarchical
fashion.

Uithol et al. (2012) noted that there are at least two ways to look
at hierarchical action. These two ways differ in what are considered
to be the different levels in such a hierarchy. One way to look
at action hierarchies is the view of part-whole relations. In this
account, each level in the hierarchy exists solely as the sum of
lower-level units. In other words, an action unit such as “get a pan
for pancake making” consists of the subunits “open the cupboard,”
“take pan from cupboard,” “place pan on counter,” and “close the
cupboard.” It should be clear that when all subordinate units are
present, the superordinate unit “get a pan” is also present, as it
is identical to the sum of its parts. Uithol et al. (2012) argues
that this kind of hierarchy does not provide an explanation of
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the complex action; it merely provides a thorough description
of the to-be-explained action, in which higher levels are more
complex than lower levels. It also does not give information about
the causal relationship between the different levels in the hierarchy,
as you cannot consider an element to be the cause of its own parts.
Another restriction of this type of hierarchy is that it can only
accommodate levels that are of a similar nature. That is, actions
can only be divided into sub-actions, not into objects or world
states.

Another way to view hierarchies is to see the different levels as
representing causal relations between the levels. In this approach,
units on a higher level causally influence units on a lower level.
In this type of hierarchy, lower-level units can be modulated by
higher-level units. In contrast with the part-whole hierarchy, lower
levels are not necessarily less complex than higher levels. Goals that
are formulated as simple and propositional states can be the cause
of more complex elements. Using this hierarchical approach also
opens up the possibility of states or objects being the cause of an
action, as it does not have the limitation of requiring action-type
goals.

Uithol et al. (2012) proposed a new model, in which the
fundamental foundation for the hierarchical structure is not cause-
and-effect (i.e., goals cause motor acts), or complexity (i.e.,
complex motor acts such as grabbing a pan consist of simpler
acts such as flexing fingers and grasping the handle), but tempo-
ral stability. In this view, stable representations can be considered
goal-related, while more temporary representations reflect motor
acts on different levels, not unlike the more enduring conceptual
representations and the less enduring motor units of Rumelhart
and Norman’s (1982) model discussed above. However, this repre-
sentation proposal does not include a model of how the hierarchies
within a task are abstracted and learned from experience, nor of
how they may be shared across tasks despite requiring different
parameterizations.

Botvinick and Plaut (2004) tackled some of these issues, point-
ing out that not only is it unclear how existing hierarchical models
learn hierarchies from experience, but also that most theoretical
accounts lead to a circular reference: acquiring sequence knowl-
edge relies on the ability to identify event boundaries, which in
turn requires sequence knowledge. A further problem is sequenc-
ing in hierarchical structures; many models (e.g., Rumelhart and
Norman, 1982; Houghton, 1990) solve that by means of forward
inhibition, but this only works on units at the lowest level of a
hierarchy. Botvinick and Plaut (2004) offered a recurrent connec-
tionist network model that helps avoiding these problems. Using
computer simulations they showed that such a network, which
contains no inherent hierarchical structure, can learn a range of
sequential actions that many consider hierarchical. The hierarchy,
they argued, emerges from the system as a whole. The network
they used is a three-layer recurrent network, with an input layer
representing held objects and fixated objects, an output layer rep-
resenting actions to be taken, and a hidden layer (with recurrent
connections) for the internal representation. Having trained this
network on a routine complex task (making coffee or tea), they
showed that it can perform complex action that can be consid-
ered hierarchical in nature (e.g., varying orders of subactions
leading to the same outcome) without relying on a hierarchical

system architecture. The network also showed slips of action
when the internal representation layer was degraded, as well as
other action errors found in empirical studies, although Cooper
and Shallice (2006) suggest that the relative frequency and types
of errors shown by the recurrent model do not match human
subjects.

We believe that architectures offering such hierarchical behav-
ior, without necessarily being hierarchically structured, can pro-
vide robots with the needed flexibility to function in a dynamic,
human-driven world. Botvinick and Plaut’s (2004) model seems
to be able to account for some aspects of flexible behavior, but
more complex and biologically inspired models such as LEABRA
(O’Reilly, 1996; Kachergis et al., under review) promise to gener-
alize to other tasks, as well as being able to learn relatively fast,
two aspects of human behavior we consider essential to emulate
in robot behavior.

CONTEXTUALIZING ACTION CONTROL
As pointed out above, one of the reasons why Lashley (1951)
considered action representations to be necessarily hierarchically
organized was the fact that the meaning and purpose of action
components vary with the goal that they serve to accomplish:
while making a kicking movement with your right leg can eas-
ily be replaced by moving your head sideways when trying to score
a goal in a soccer game, that would not be a particularly good
idea when performing a group can-can on stage during a per-
formance of Orpheus in the Underworld. In other words, goals
are needed to contextualize action components. In AI, robotics,
and some information-processing approaches in psychology, the
main function of goal representation is to guide the selection of
task components, including stimulus and response representations
or perception-action rules. In traditional processing models, like
ACT-R or Soar (Laird et al., 1987; Anderson, 1993), goal represen-
tations limit the number of production rules considered for a task,
which reduces the search space and makes task preparation more
efficient (Cooper and Shallice, 2006). Moreover, goals commonly
serve as a reference in evaluating an action, when comparing the
current state of the environment with the desired state (Miller
et al., 1960).

This practice was challenged by Botvinick and Plaut (2004),
who pointed out at least two problems with goal representations
in cognitive models. First, goals themselves may be context-
dependent. The goal of cleaning the house may have rather
different implications depending on whether it serves to satisfy
the expectations of one’s partner or to prepare for a visit of one’s
mother-in-law. Likewise, the goal of stirring will produce some-
what different behavior depending on whether one is stirring egg
yolks or cement. Most models that postulate the existence of goals
do not allow for such context dependence. Second, it is argued that
many everyday activities do not seem to have definable, or at least
not invariant goals; just think of playing a musical instrument
or taking a walk. The authors demonstrated that goal-directed
behavior can be achieved without the explicit representation of
goals. In the previously mentioned simulation studies with recur-
rent neural networks, they were able to simulate goal-directed
actions that operate very much like Miller et al.’s (1960) TOTE
units, without any need to represent the goal explicitly. Obviating
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the need for representing goals, such a model could be applied
to behavior with non-obvious goals, such as taking a walk as a
consequence of feeling restless or having the thought of fresh air
(Botvinick and Plaut, 2004).

Cooper and Shallice (2006) took issue with this non-
representationalist account of goals, giving at least two reasons
why goals should be implemented in cognitive models. First, goals
allow for the distinction between critical and supporting actions.
When making pancakes, the subaction of adding egg to the mix-
ture consists of picking up an egg, breaking it (above the bowl), and
discarding the empty shell (not above the bowl). It should be clear
that the breaking of the egg is the most important action in this
sequence. Dissociating important actions from non-important
actions can account for skipping unnecessary steps. When apply-
ing butter to two slices of toast, it is not necessary to execute the
supporting actions “discard knife” and “pick up knife” between the
two executions of the “butter toast” action program. Second, the
implementation of goals would allow for subactions that serve the
same purpose to be interchanged. For example, flipping a pancake
by flipping it in the air or flipping it using a spatula would both
be perfectly good methods for pancake flipping, and the shared
goal allows these actions to be interchanged. Models without goal
representation can only show this behavior if they are explicitly
trained on all the alternative actions that can be taken. To make the
realization that a set of actions are equivalent for achieving a goal,
a model would in essence have to contain a representation of that
goal.

Interestingly, however, goal representations (whether explicit
or implicit) can play an important role in contextualizing cogni-
tive representations. Most representational accounts assume that
representations of stimulus and action events are invariant. The
need to contextualize representations – i.e., to tailor them to the
particular situation and task at hand – thus seems to put the entire
burden on the goal, so that the explicit representation of the goal
seems to be a necessary precondition for adaptive behavior. But,
from a grounded cognition perspective, it seems that alternative
scenarios are possible. In a grounded cognition framework, the
representation of objects and object categories takes an embod-
ied form, using modal features from at least the visual, motor,
and auditory modalities (Prinz and Barsalou, 2000). For exam-
ple, the concept of apple would be represented by a network of
visual codes representing <green> and <round>, but also the
auditory <crunchy sound> of biting into it. The embodied cog-
nition framework has already been successfully implemented in
robot platforms such as iCub, and shows stimulus compatibility
effects similar to those that can be observed in humans (Macura
et al., 2009; Pezzulo et al., 2011).

According to the Theory of Event Coding (Hommel et al.,
2001), events are represented – like objects – in a feature-based,
distributed fashion. This will mean that the aforementioned apple
would be represented by a network of codes representing not
only the apple’s perceptual features such as being <greenish>

and <round>, but also its properties such as being <edible>,
<graspable>, <carryable>, <throwable>, and so forth. In this
view, one of the main roles of goals is to emphasize (i.e., increase
the weight of) those features that in the present task are of particu-
lar importance. This means that when hungry, the feature of being

<edible> will be primed in advance and become more activated
when facing an apple, while <throwability> will become more
important when being in danger and trying to defend oneself.
Several studies have provided evidence that goals are indeed bias-
ing attentional settings toward action-relevant feature dimensions
(e.g., Fagioli et al., 2007; Wykowska et al., 2009; Kühn et al., 2011),
suggesting that the impact of goals goes beyond the selection
of production rules and outcome evaluation. Interestingly, this
kind of “intentional weighting” function (Memelink and Hom-
mel, 2013) can be considered to represent the current goal without
requiring any explicit representation – very much along the lines of
Botvinick and Plaut (2004).

Another potential role of goals is related to temporal order. In
chaining models, the dimension of time was unnecessary because
the completion of each component automatically“ignites”the next
component. The same holds for current planners in cognitive
robotics, which commonly fix the order of action subcompo-
nents (e.g., CRAM: Beetz et al., 2010). But action plans may
follow a more abstract syntax instead, much like how syntac-
tic constraints of natural languages allow for various possible
sequences. For instance, consider the process of making tea. With
the possible exception of true connoisseurs, it doesn’t make any
difference for most tea drinkers whether one puts the tea or
the water into the cup first; i.e., the order of these two sub-
actions is interchangeable. A truly flexible system would thus
allow for any of these orders, depending on whether water or
tea is immediately at hand. While a chaining model would not
allow for changing the original order, a more syntactic action
plan would merely define possible slots for particular subcom-
ponents (e.g., Rosenbaum et al., 1986), so that the actual order of
execution would be an emerging property of the interaction of
the syntactic plan and the situational availability of the necessary
ingredients.

These considerations suggest that robotic systems need to
incorporate at least some rudimentary aspects of time and tempo-
ral order to get on par with humans. Along these lines, Maniadakis
and Trahanias (2011) have propagated the idea that robotic sys-
tems should be equipped with some kind of temporal cognition, be
it by incorporating temporal logic or event calculus. Indeed, recent
robotic knowledge representation systems, such as KnowRob
(Tenorth and Beetz, 2012), do possess the ability to do spatiotem-
poral reasoning about the changing locations of objects, such as
predicting when and where objects can be found.

CONCLUSION
We have discussed how conceptions of robotic action planning
can benefit from insights into human action planning. Indeed,
we believe that constructing truly flexible and autonomous robots
requires inspiration from human cognition. We focused on four
basic principles that characterize human action planning, and we
have argued that taking these principles on board will help to make
artificial cognition more human-like.

First, we have discussed evidence that human action planning
emerges from the integration of a rather abstract, perhaps sym-
bolic representational level and concurrent planning at a lower,
more concrete representational level. It is certainly true that multi-
level planning can create difficult coordination problems. Using
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grounded cognition approaches in robotics is potentially a good
method to ground such higher-level symbolic representation in
lower-level sensorimotor representations, which may allow robot
action to become more flexible and efficient.

Second, we have argued that human action planning emerges
from the interplay of feedforward and feedback mechanisms.
Again, purely feedforward or purely feedback architectures are
likely to be more transparent and easier to control. However, fast,
real-time robotic action in uncertain environments will require
a hybrid approach that distributes labor much like the human
brain does by combining slow and highly optimized feedforward
control with fast sensorimotor loops that continuously update the
available environmental information. A major challenge for the
near future will be to combine such hybrid systems with error-
monitoring and error-correcting mechanisms. When preparing
pancake dough, accidentally pouring some milk outside the bowl
would need to trigger a fast correction mechanism informed by
low-level sensory feedback but not necessarily the re-planning of
(or crying over) the entire action. However, if for some reason
the entire milk carton is emptied by this accident, leaving the
agent without the necessary ingredient, feedback would have to
propagate to higher, more abstract or more comprehensive plan-
ning levels to decide whether the plan needs to be aborted. How
this works in detail and how decisions are made as to which level
is to be informed is not well understood, but progress is being
made. Research into feedback processes has yielded information
about the optimal speed of sensorimotor loops (Joshi and Maass,
2005), and we find it reasonable to expect that models using such
fast feedback loops combined with accurate feedforward plan-
ning can ultimately produce human-like motor performance in
robots.

Third, we have argued that while descriptions of human actions
may refer to a hierarchy, it is not yet clear whether the cognitive –
in vivo or in silico – representations of such actions need to be
explicitly hierarchical as well. Equally unclear is whether represen-
tations that differ in hierarchical level would necessarily need to
differ in format. However, it is clear that representations that are
considered to be “higher in hierarchy” are more comprehensive.
The concept of “making a pancake,” say, is necessarily richer and
more abstract than the associated lower-level actions of “reach-
ing for egg” and “grabbing a pan,” suggesting that the latter two
are more directly grounded in sensorimotor activity (Kraft et al.,
2008). Future research will need to investigate how representa-
tions at different planning levels (or different levels of description)
interact or relate to each other.

The nature of goals and their role in action control is also a mat-
ter of ongoing research. The two different viewpoints – i.e., that
goals require explicit representation or not – seem to reflect dif-
ferent preferences in conceptualization and modeling techniques,
and it may well turn out that an explicit representation of goals
in the preferred modeling language translates to a more implicit
representation of goals in the actual functional or neural archi-
tecture. In robotics, most modern plan languages use a form of
explicit goal-related action control that defines a goal as a required
world state on which constraints can be imposed. Such a struc-
ture is flexible enough to allow equifinality, but it is unclear how
knowledge about the various means to produce a result is acquired.

Ultimately, we believe that subsymbolic programming approaches
may allow for more adaptive, “human” representational architec-
tures – though likely more difficult to engineer and define provably
safe operating conditions for.

To conclude, we believe that the construction of robots that
are up to real-life, everyday actions in environments that are as
uncertain as human environments requires the consideration of
cognitive principles like the four principles we have discussed in
this article. The benefit of doing so will be twofold. For one, it will
strongly increase the flexibility of robots. For another, it will make
robots more human-like in the eyes of the human user, which
will help us understand and cooperate with our future robotic
colleagues.
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Chapter 2
Crossroads of cognitive robotics and psy-
chology

In the previous chapter we discussed the merits of psychological insights for robotics, and argued
that the field of robotics can use the human brain as inspiration for designing robotic systems.
One of the areas that has taken this advice to heart is cognitive robotics.

In this chapter, we focus on the intersection of cognitive psychology and cognitive robotics. Many
skills needed for everyday action, such as affordance inference and action-effect learning have
successfully–although limited–been demonstrated in cognitive robots.

This chapter is based on the following book chapter, part of the book Cognitive Robotics by
Hooman Samani:

de Kleijn, R., Kachergis, G., and Hommel, B. (2015). Robotic action control: On the
crossroads of cognitive psychology and robotics. In H. Samani (Ed.), Cognitive robotics.
Taylor & Francis.
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T hefieldof robotics is shifting frombuilding industrial robots that canper-
form repetitive tasks accurately and predictably in constrained settings,

to more autonomous robots that should be able to perform a wider range
of tasks, including everyday household activities. To build systems that can
handle the uncertainty of the real world, it is important for roboticists to look
at how humans are able to perform in such a wide range of situations and
contexts–a domain that is traditionally the purview of cognitive psychology.
Cognitive scientists have been rather successful in bringing computational
systems closer to human performance. Examples include image and speech
recognition and general knowledge representation using parallel distributed
processing (e.g., modern deep learning models).

Similarly, cognitive psychologists can use robotics to complement their
research. Robotic implementations of cognitive systems can act as a “com-
putational proving ground”, allowing accurate and repeatable real-world
testing of model predictions. All too often, theoretical predictions–and even
carefully-conducted model simulations–do not scale up or even correspond
well to the complexity of the real world. Psychology should always seek to
push theory out of the nest of the laboratory and see if it can take flight.
Finally, cognitive psychologists have an opportunity to conduct experiments
that will both inform roboticists as they seek to make more capable cognitive
robots, and increase our knowledge of how humans perform adaptively in
a complex, dynamic world. In this chapter, we will give a broad but brief
overview of the fields of cognitive psychology and robotics, with an eye to
how they have come together to inform us about how (artificial and natural)
actions are controlled.

9.1 EARLY HISTORY OF THE FIELDS

9.1.1 History of cognitive psychology

Before cognitive psychology and robotics blended into the approach now
known as cognitive robotics, both fields already had a rich history. Cognitive
psychology as we now know it has had a rocky past (as havemost psycholog-
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ical disciplines, for that matter). Breaking away from philosophy, after briefly
attempting to use introspection to observe the workings of themind, the field
of psychology found it more reliable to rely on empirical evidence.

Although making rapid strides using this empirical evidence, for exam-
ple in the form of Donders’ now classic reaction time experiments which
proposed stages of processing extending from perception to action, early
cognitive psychology came to be dominated by a particular approach, be-
haviorism. This position, popularized by Watson [54] and pushed further by
Skinner [46], held that the path for psychology to establish itself as a natural
science on parwith physics and chemistrywould be to restrict itself to observ-
able entities such as stimuli and responses. In this sense, behaviorists such
as Skinner were strongly anti-representational, i.e., against the assumption of
internal knowledge and states in the explanation of behavioral observations.
On the other hand, the focus on observable data brought further rigor into
the field, and many interesting effects were described and explained.

The behaviorist approach dominated the field of psychology during the
first half of the 20th century. In the 1950s, seeming limitations of behaviorism
fueledwhat some scholarswould call the neocognitive revolution. Startingwith
Chomsky’s scathing 1951 review of Skinner’s book that tried to explain how
infants learn language by simple association, many researchers were con-
vinced that behaviorism could not explain fundamental cognitive processes
such as learning (especially language) and memory. The foundations of the
field of artificial intelligence were also nascent, and pursuing explanations
of high-level, uniquely human aptitudes–e.g., analytical thought, reasoning,
logic, strategic decision-making–grew in popularity.

9.1.2 The computer analogy

Another factor contributing to the neocognitive revolutionwas the emergence
of a new way to describe human cognition as similar to electronic computer
systems. The basic mechanism operating computers was (and still is, in a fun-
damental way) gathering input, processing it, and outputting the processed
information, not unlike the basic cognitive model of stimulus detection, stor-
age and transformation of stimuli, and response production.

Clearly, this processing of information requires some representational
states which are unaccounted for (and dismissed as unnecessary) by behav-
iorists. This newway to look at human cognition as an information processing
system not only excited psychologists as a way of understanding the brain,
but the analogy also raised hopes for building intelligent machines. The idea
was that if computer systems could use the same rules and mechanisms as
the human brain, they could also act like humans. Perhaps the most well-
known proponent of this optimistic vision was Turing [51], who suggested
that it wouldn’t be long before machine communication would be indistin-
guishable from human communication. Maybe the secret of cognition lies in
the way the brain transforms and stores data, it was thought.



174 � Cognitive Robotics

Alas, the optimists would be disappointed. It soon became clear that
computers and humans have very different strengths and weaknesses. Com-
puters can calculate pi to twenty significant digits within mere milliseconds.
Humans can read terrible handwriting. Clearly, humans are not so compara-
ble to basic input-output systems after all. It would take another 25 years for
cognitive psychology and artificial intelligence to begin their romance once
again, in the form of the parallel distributed processing (PDP) approach [40].

9.1.3 Early cognitive robots

With this idea of smart computer systems in mind, it seemed almost straight-
forward to add embodiment to build intelligent agents. The first cognitive
robots were quite simple machines. TheMachina Speculatrix [53] consisted of
a mobile platform, two sensors, actuators and ‘nerve cells’. Understandably,
these robots were designed to mimic behavior of simple animals, and could
move safely around a room and recharge themselves using relatively simple
approach and avoidance rules.

Due to their simplicity, it was questionable exactly how cognitive these
robots were–they are more related to cybernetics and control theory (e.g.,
[5])–but soon enough complexity made its way into cognitive robotics.

From the 1960s, robots would be able to represent knowledge and plan se-
quences of operations using algorithms such as STRIPS [17], that would now
be considered essential knowledge for every AI student. The STRIPS planner,
which represents goal states and preconditions and attempts to derive the
action sequences that would achieve them before carrying them out, is quite
slow to execute. Moreover, this type of planning suffers from its closed world
assumption (i.e., that the environment and all relevant states are known–by
programming–and will not change), and the massive complexity of the real
world, leading to intractable computations. Yet the general approach taken
by STRIPS–of modeling the environment, possible actions and state trans-
formations, and goal states via predicate logic, and operating robots via a
sense-plan-act loop–has dominated cognitive robotics for quite some time,
and is still a strong thread today.

Various behavior-based robotics architectures and algorithms–taking
some inspiration from biological organisms–have been developed in the past
few decades. An early, influential example is Rodney Brooks’ subsumption
architecture [9], which eschews planning entirely–“planning is just a way
of avoiding to figure out what to do next”, using a defined library of basic
behaviors arranged hierarchically to generate behavior based on incoming
stimuli. Although fast and often generating surprisingly complex behavior
from simple rules (see also [8]), the subsumption architecture and many
other behavior-based robotics algorithms do not yet incorporate much from
the lessons to be learned from psychological studies in humans.
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9.2 ACTION CONTROL

9.2.1 Introduction

One of the other areas that shows considerable overlap between robots and
humans is motor/action control. Two types of control systems govern motor
action: feedforward and feedback control systems.

A feedforward motor control system sends a signal from the (human or
robotic) motor planning component to the relevant motor component us-
ing predetermined parameters, executing said action. Information from the
environment can be considered only before execution begins, which makes
feedforward control suitable for predictable environments.

In contrast, a feedback motor control system incorporates information
from itself or the environment (feedback) more or less continuously to mod-
ulate the control signal. In this way, the system can dynamically alter its
behavior in response to a changing environment.

9.2.2 Feedforward and feedback control in humans

For many years, psychology and related disciplines have approached action
control from rather isolated perspectives. As the probably first systematic
studyonmovement control byWoodworth [55] hadprovided strong evidence
for the contribution of environmental information, many authors have tried
to develop closed-loop models of action control that rely on a continuous
feedback loop (e.g., [1]). At the same time, there was strong evidence from
animal and lesion studies [31, 49] and from theoretical considerations [34]
that various movements can be considered in the absence of sensorimotor
feedback loops,whichhasmotivated thedevelopment of feedforwardmodels
(e.g., [22]).

Schmidt [43] was one of the first who argued that human action control
consists of both feedforward and feedback components. According to his
reasoning, human agents prepare a movement schema that specifies the rel-
evant attributes of the intended movement but leave open parameter slots
that are specified by using online environmental information. Neuroscientific
evidence has provided strong support for such a hybrid control model, sug-
gesting that off-line action planning along a ventral cortical route is integrated
with online sensorimotor specification along a dorsal route [19, 18].

In particular, feedforward mechanisms seem to determine the necessary
action components off-line and pre-load at least some of them before initiat-
ing the action [22], and to selectively tune attention to stimuli and stimulus
dimensions that are relevant for the task [24]. Feedback processes, in turn,
provide excellent accuracy–often at the cost of speed [44]. These strengths
and weaknesses have motivated hybrid models claiming that feedforward
mechanisms provide the skeleton of action plans which leave open slots for
parameters provided by feedback processes [43, 18, 24].

A particularly good example of this kind of interaction is provided by
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the observations of Goodale and colleagues [20]. In a clever experiment,
participants were asked to rest their hand on a platform and point to a visual
target presented at a random location on an imaginary line in their right
visual field. The participants were not told that in half of the trials the target
changed location during the first saccade. The authors found that participants
would successfully point to the target on these trials without even being
aware of the location change, and without additional delay. As feedforward
programming is thought to take time, a fast and online feedback mechanism
of which participants are unaware has to be responsible for this finding.

On a higher level, interaction between feedforward and feedback sys-
tems must exist for goal-directed action to be carried out. Higher level,
goal-directed action planning, such as planning to make pancakes would
be impossible to plan in a completely feedforward fashion: it would require
all motor parameters to be specified a priori, and thus would require exact
knowledge of the position and properties of all necessary equipment and
ingredients, such as weight, friction coefficients, etc.

Instead, many of these parameters can be filled in online by using infor-
mation from the environment. It is not necessary to know the exact weight of
a pan, because you can determine that easily by picking it up: you increase
the exerted force until the pan leaves the surface of the kitchen counter. Al-
though, you likely also learn a distribution of probable pan weights (e.g.,
more than 50 g and less than 10 kg) from your experience of other pans–or
even just similarly-sized objects.

Interaction between feedforward and feedback becomes even more ap-
parent on a higher level when a planned action fails to be executed. When
a necessary ingredient is missing, replanning (or cancellation) of a prepro-
grammed action sequence may be necessary: if there is no butter, can I use
oil to grease up the pan? Somehow, this information gathered by feedback
processes must be communicated to the higher level action planner.

9.2.3 Feedforward and feedback control in robots

The theorizing on action control in robotic systemsmust be considered rather
ideological, sometimesdrivenby the specifics of particular robots and/or tasks
considered and sometimes by broadly generalized anti-representationalist
attitudes. Many early robots only had a handful of sensors and responded in
a fixed pattern of behavior given a particular set of stimuli. Some robots were
evenpurely feedforward, performing the sameactionor action sequence,with
no sensory input whatsoever [37]. Feedforward or simple reactive control
architectures make for very brittle behavior: even complex, carefully-crafted
sequences of actions and reactions will appear clumsy if the environment
suddenly presents an even slightly novel situation.

More complex architectures have been proposed, often with some anal-
ogy to biology or behavior, giving birth to the field of behavior-based robotics.
The subsumption architecture [9] was a response to the traditional GOFAI, and
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posited that complex behavior need not necessarily require a complex control
system. Different behaviors are represented as layers that can be inhibited by
other layers. For example, a simple robot could be provided with the behav-
iorswandering, avoiding, pickup, and homing.These behaviors are hierarchically
structured, with each behavior inhibiting its preceding behavior [4].

This hierarchy of inhibition between behavior is (although somewhat
more complex) also visible in humans. For example, if your pants are (acci-
dentally) set onfirewhile doing thedishes, fewpeoplewouldfinish the dishes
before stopping, dropping, and rolling. In other words, some behaviors take
precedence over others. An approach similar to the subsumption architec-
ture has been proposed by [3]. Themotor schema approach also uses different,
parallel layers of behavior, but does not have the hierarchical coordination
as the subsumption approach does. Instead, each behavior contributes to the
robot’s overall response.

On a higher level, as noted in the previous section, other problems arise.
When a planned action fails to succeed, for example because a robot can’t find
a pan to make pancakes in, replanning is necessary. The earliest AI planners
such as GPS would simply backtrack to the previous choice point and try
an alternative subaction. However, this does not guarantee the eventual suc-
cessful completion of the action. Other planners, such as ABSTRIPS [41], use
a hierarchy of representational levels. When it fails to complete a subaction,
it could return to a more abstract level.

However, truly intelligent systems should be more flexible in handling
such unforeseen events. If a robot cannot make me a pizza with ham, maybe
it should make me one with bacon? Generalizing and substituting appro-
priate remain an elusive ability for robots, although vector space models of
semantics (e.g., BEAGLE; [28]) offer a step in the right direction. Like neural
networks, these models represent items (e.g., words) in a distributed fashion,
using many-featured vectors with initially low similarity between random
items. As the model learns–say, by reading documents, item representations
are updated to make them more similar (on a continuous scale) to contex-
tually similar items. These continually-updated representations can be used
to extract semantic as well as syntagmatic (e.g., part-of-speech) relationships
between items. Beyond text learning, vector space models may ultimately
be used to learn generalizable representations for physical properties and
manipulations of objects and environments.

9.2.4 Robotic action planning

It is understood that reaching movements in humans have an initial ballistic,
feedforward component, followed by a slower, feedback-driven component
that corrects for error in the initialmovement.Aspeople becomemore adept at
reaching to targets at particular distances, a greater portion of theirmovement
is devoted to the initial feedforward component, and less time is spent in the
feedback component, thus speeding response times. Understanding how this
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happens should enable roboticists to makemore adaptive, human-like motor
planning systems for robots.

In this line of research, Kachergis et al. [29] studied sequence learning
using mouse movements. Inspired by earlier work of Nissen and Bullemer
[38], subsequences of longer sequences were acquired by human participants
during a learning phase. The participants seem to implicitly extract the subse-
quences from longer sequences by showing faster response times and context
effects.

These findings cast doubt on a simple chaining theory of sequential ac-
tion. Rosenbaum et al. [39] interpreted these findings as evidence that sensory
feedback is not a necessary component for action sequencing, in keepingwith
the conclusion of Lashley [34]. They argued that “the state of the nervous sys-
tem can predispose the actor to behave in particular ways in the future,”
(p. 526), or, there are action plans for some behaviors. And yet, studies on
spontaneous speech repair (e.g., [36]) also show that people are very fast in
fixing errors in early components of a word or sentence, much too fast to
assume that action outcomes are evaluated only after entire sequences are
completed. This means that action planning cannot be exclusively feedfor-
ward, as Lashley [34] seemed to suggest, but must include several layers of
processing, with lower levels continuously checking whether the current ac-
tion component proceeds as expected. In other words, action planning must
be a temporally extended process in which abstract representations to some
extent provide abstract goal descriptions, which must be integrated with
lower-level subsymbolic representations controlling sensorimotor loops. The
existence of subsymbolic sensorimotor representations would account for
context and anticipation effects, as described above.

The main lesson for robotic motor planning is that purely symbolic plan-
ning may be too crude and context-insensitive to allow for smooth and effi-
cientmulti-component actions. Introducingmultiple levels of action planning
and action control may complicate the engineering considerably, but it is also
likely to make robot action more flexible and robust–and less “robotic” to the
eye of the user.

9.3 ACQUISITION OF ACTION CONTROL

9.3.1 Introduction

In order for humans or robots to be able to achieve their goals, it is necessary
for them to know what effect an action would have on their environment.
Or, reasoning back, what actions are required to produce a certain effect in
the environment. Learning relevant action-effect bindings as an infant is a
fundamental part of development and likely bootstraps later acquisition of
general knowledge.

Inhumans, learnedaction-effects seem tobe storedbidirectionally. Follow-
ing Lotze [35] and Harless [21], James [27] noted that intentionally creating
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a desired effect requires knowledge about, and thus the previous acquisi-
tion of action-effect contingencies. The Theory of Event Coding (TEC; [25]) is a
comprehensive empirically well-supported (for recent reviews, see [23, 45])
theoretical framework explaining the acquisition and use of such action-effect
bindings for goal-directed action. TEC states that actions and their expected
effects share a common neural representation. Therefore, performing an ac-
tion activates the expectation of relevant effects and thinking of (i.e., intend-
ing or anticipating) an action’s effects activatesmotor neurons responsible for
achieving those effects.

9.3.2 Human action-effect learning

9.3.2.1 Traditional action-effect learning research

In traditional cognitive psychology experiments, action-effect bindings are
acquired by having humans repetitively perform an action (such as pressing
a specific button on a keyboard), after which an effect (such as a sound or
a visual stimulus) is presented. After a certain amount of exposure to this
combination of action and effect, evidence suggests that a bidirectional bind-
ing has been formed. When primed with a previously learned effect, people
respond faster with the associated action [15]. This action-effect learning is
quite robust but sensitive to action-effect contingency and contiguity [16].

9.3.2.2 Motor babbling

Of course, action-effect learning does not only happen in artificial environ-
ments such as psychology labs. In fact, action-effect learning in humans starts
almost instantly after birth [52] and some would argue even before. Young
infants perform uncoordinated movements known as body or motor babbling.
Most of these movements will turn out to be useless, however, some of them
will have an effect that provides the infant with positive feedback. For ex-
ample, a baby could accidentally push down with its right arm while lying
on its belly, resulting in rolling on its back and seeing all sorts of interesting
things. Over time, the infant will build up action-effect associations for ac-
tions it deems useful, and can performmotor acts by imagining their intended
effects.

Having mastered the intricacies of controlling the own body, higher level
action-effects can be learned in a manner similar to motor babbling. Een-
shuistra et al. [14] give the example of driving a spacecraft that you are trying
to slow down. If nobody ever instructed you on how to do that, your best
option would probably be pressing random buttons until the desired effect
is reached (be careful with that self-destruct button!). Once you have learned
this action-effect binding, performance in a similar situation in the future will
be much better.
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9.3.3 Robotic action-effect learning

The possibility that cognition can be grounded in sensorimotor experience
and represented by automatically created action-effect bindings has attracted
some interest of cognitive roboticists already. For instance, Kraft et al. [32]
have suggested a three-level cognitive architecture that relies on object-action
complexes, that is, sensorimotor units on which higher-level cognition is
based. Indeed, action-effect learning might provide the cognitive machinery
to generate action-guiding predictions and the off-line, feedforward compo-
nent of action control. This component might specify the invariant aspects of
an action, that is, those characteristics that need to be given for an action to
reach its goal, to create its intended effect while an online component might
provide fresh environmental information to specify the less goal-relevant pa-
rameters, such as the speed of a reaching movement when taking a sip of
water from a bottle [24]. Arguably, such a system would have the benefit
of allowing for more interesting cognitive achievements than the purely on-
line, feedback-driven systems that are motivated by the situated-cognition
approach [10]. At the same time, it would be more flexible than systems that
rely entirely on the use of internal forward models [13]. Thus, instead of pro-
grammers trying to imagine all possible scenarios and enumerate reasonable
responses, it might be easier to create robots that can learn action-effect as-
sociations appropriate to their environment and combine them with online
information.

In robots as well as in humans, knowledge about one’s own body is
required to acquire knowledge about the external world. Learning how to
control your limbs–first separately and then jointly (e.g., walking)–clearly
takes more than even the first few years of life: after learning to roll over,
crawl, and then walk, we are still clumsy at running and sport for several
years (if, indeed, we ever become very proficient). Motor babbling helps
develop tactile and proprioception–as well as visual and even auditory cues–
of what our body in motion feels like. Knowing these basic actions and their
effects on ourselves (e.g., what hurts) lays the foundation for learning how
our actions can affect our environments.

In perhaps the first ever study of motor babbling in a (virtual) robot, Ku-
perstein [33] showedhowrandommovement execution can formassociations
between a perceived object-in-hand position and the corresponding arm pos-
ture. This association is bidirectional, and as such is in linewith ideomotor (or
TEC) theory. We (and others, e.g., [11]) believe that such bidirectional bind-
ings can help robots overcome traditional problems, such as inverse model
inference from a forward model.

More recent investigations in robotic motor babbling have extended and
optimized the method to include behavior that we would consider curiosity
in humans. For example, Saegusa et al. [42] robotically implemented a senso-
rimotor learning algorithm that organized learning in two phases: exploration
and learning. In the exploration stage, random movements are produced,
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while in the learning stage the action-effect bindings (or, more specifically,
mapping functions) are optimized. The robot can then decide to learn bind-
ings that have not yet been learned well.

9.4 DIRECTIONS FOR THE FUTURE

9.4.1 Introduction

Many questions remain with respect to the acquisition and skillful perfor-
mance of not only well-specified, simple actions (e.g., reaching to a target)
but of complex actions consisting of various components and involving vari-
ous effectors. Indeed, how canwe create a learning algorithm that can go from
basic motor babbling to both successful goal-directed reaching, grasping, and
manipulations of objects? To accomplish this obviously difficult goal, it will
likely be beneficial for psychologists to study infants’ development of these
abilities and beneficial for cognitive roboticists to learn more from human
capabilities.

9.4.2 Affordance learning

Object manipulation and use is an indispensable activity for robots working
in human environments. Perceiving object affordances–i.e., what a tool can do
for you or how you can use an object–seems to be a quick, effortless judgment
for humans, in many cases. For example, when walking around and seeing a
door, you automatically pull the handle to open it.

One of theways robots can perform object affordance learning is bymotor
babbling using simple objects asmanipulators (e.g., [47]). In a so-called behav-
ioral babbling stage a robot applies randomly chosen behaviors to a tool and
observes their effects on an object in the environment. Over time, knowledge
about the functionality of a tool is acquired, and can be used to manipulate a
novel object with the tool.

As impressive as this may sound, this approach does not allow for easy
generalization, and the robot cannot use this knowledge tomanipulate objects
using another, similar, tool. More recent approaches, such as demonstrated
by Jain and Inamura [26] infer functional features from objects to generalize
affordances to unknown objects. These functional features are supposed to
be object invariant within a tool category.

In humans, an approach that seems successful in explaining affordance
inference is based on Biederman’s recognition-by-components theory [6]. This
theory allows for object recognition by segmenting an encountered object in
elementary geometric parts called geons. These are simple geometric shapes
such as cones, cylinders and blocks. By reducing objects to a combination
of more elementary units invariance is increased, simplifying object classi-
fication. Biederman recognized 36 independent geons, having a (restricted)
generative power of 154 million three-geon objects.
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In addition to being useful for object classification, geons can also be used
to infer affordances. For example, a spoon is suitable for scooping because its
truncated hollow sphere at the end of its long cylinder allows for containing
things, and an elongated cylinder attached to an object can be used to pick it
up.

One very promising example of the use of geons in affordance inference is
demonstrated by Tenorth and Beetz [50]. This technique matches perceived
objects to three-dimensional CAD models from a public database such as
Google Warehouse. These models are then segmented into geons, which
makes affordance inference possible.

However, the affordances that geons give us need to be learned in some
way. Teaching robots how to infer what a tool can be capable of remains dif-
ficult. Ultimately, we want affordances to develop naturally during learning:
be it fromwatching others, from verbal instruction, or from embodied exper-
imentation. Task context is also an important aspect of affordance learning:
depending on the situation, a hammer can be used as a lever, a paperweight,
a missile, or well, a hammer. To understand how context affects action plan-
ning, studying naturalistic scenes andhuman activities jointly seems essential
(cf. [2]).

Learning geon affordances that can be generalized to object affordances
seems a fruitful approach to automating affordance learning in robots, al-
though it is early to say whether this or other recent approaches will fare bet-
ter. For example, deep neural networks use theirmultiple hidden layers along
with techniques to avoid overfitting to learn high-level perceptual features
for discriminating objects. The representations learned by such networks are
somewhat more biologically-plausible than geon decompositions, and thus
may be more suitable for generalization (although cf. [48] for generalization
problems with deep neural networks).

9.4.3 Everyday action planning

A major obstacle in the way of robots performing everyday actions is the
translation of high-level, symbolic task descriptions into sensorimotor action
plans. In order to make such translations, one method would be to learn the
other way around: by observing sensorimotor actions, segment and classify
the input.

Everyday action is characterized by sequential, hierarchical action sub-
sequences. Coffee- and tea-making tasks, for example, have shared subse-
quences such as adding milk or sugar. Moreover, the goal of adding sugar
might be accomplished in one of several ways: e.g., tearing open and adding
from a packet, or spooning from a bowl or box. Also, these subsequences do
not necessarily have to performed in the same order every time (with some
constraints, of course). It is this flexibility and ability to improvise that makes
everyday action so natural for humans, yet so hard for robots.

Cognitive models that represent hierarchical information have been pro-
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posed (e.g. [12], [7]), but differ in the way they represent these hierarchies.
One approach explicitly represents action hierarchies by hard-coding them
into themodel–hardly somethingwe can do for a general autonomous robot–
whereas the latter models hierarchy as an emergent property of the recurrent
neural network. More recently, the model put forth by Kachergis et al. [30],
uses a neural network with biologically plausible learning rules to extract
hierarchies from observed sequences, needing far fewer exemplars than pre-
vious models.

9.5 CONCLUSION
In this chapter, we have discussed several concepts that are shared between
cognitive robotics and cognitive psychology in order to argue that the creation
of flexible, truly autonomous robots depends on the implementation of algo-
rithms that are designed to mimic human learning and planning. Thus, there
are many relevant lessons from cognitive psychology for aspiring cognitive
roboticists.

Ideomotor theory and its implementations such as TEC provide elegant
solutions to action-effect learning. Roboticmotor learning algorithms that use
motor babbling to bootstrap higher-order learning seem to be promising, and
require little a priori knowledge given by the programmer, ultimately leading
to more flexible robots.

Generalization of action plans is still a very difficult problem. Inferring
hierarchical structure of observed or learned action sequences seems to be
a promising approach, although the structure of everyday action seems to
be nearly as nuanced and intricate to untangle as the structure of human
natural language–and less well-studied, at this point. Again, we believe that
biologically inspired learning models such as LeabraTI can play a role in
making robotic action more human-like.

The overlapping interests of cognitive robotics and cognitive psychology
has proven fruitful so far. Mechanisms like motor babbling and affordance
inference, which are extensively studied in humans, can provide robots with
techniques to make their behavior more flexible and human-like. We believe
human inspiration for robots can be found at an even lower level by incorpo-
rating biologically-inspired neural models for learning in robots.
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