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Fig. 4. Object model representation. The object model instance refers to bi-
nary data for a model as well as to a detailed description of the object class to
be exchanged. In this case, the model describes a cabinet composed of several
articulated doors connected with hinges to the cabinet’s frame.

class IkeaExpeditShelf2x2 that consists of articulated parts,
namely, doors connected to its frame via hinges. The relative
poses of the hinges with respect to the body of the cabinet
can be estimated [27] and stored in the class description. This
way, the information about their locations and properties can
be applied to other instances of the same type of cabinet. Once
the cabinet has been recognized using the model ObjModel-
ExpeditShelf2x2, the relative coordinates are transformed into
global coordinates based on the estimated pose of the cabinet.
All coordinate frames are explicitly described, and all numeric
values can be annotated with their unit of measure from the
QUDT ontology3, allowing transparent conversion of, e.g.,
lengths from meters to feet.
After downloading an object model, the robot sends the

linked recognition model file to its perception system and loads
its OWL description into its local knowledge base. Based on the
set of available object models and their links to object classes,
the robot can determine whether it can recognize a certain kind
of object or if a model needs to be downloaded.

VI. ENVIRONMENT MODELS

ROBOEARTH supports various kinds of environment maps
(topological and metric maps, two- and three-dimensional,
created using different sensors like 2D laser scanners, tilting
lasers or cameras, etc.). Fig. 5 describes their representation
in the ROBOEARTH language: Each map is annotated with an
OWL description specifying its type and some basic properties.
The map content can either be described in the same OWL
file, which enables the system to reason about it, or be linked

3http://qudt.org/.

Fig. 5. Environment model representation. Different types of maps are sup-
ported and either described completely in the ROBOEARTH language, or in a
linked binary file. A spatial hierarchy of room, building, street, city, etc. de-
scribes which environment the map belongs to and allows to search for suitable
maps in ROBOEARTH.

as external (binary) files. The latter is often used for maps for
which established file formats exist or where logical inference
would not make sense (e.g., occupancy grid maps).
In order to exchange these maps, they need to be annotated

with information about which environment they describe so that
a robot searching for information can find them in the data-
base. The approach chosen for the ROBOEARTH language is
similar to the human way of describing an address: Maps are
annotated with the city, street, building, floor, and the number
or type of room they describe, as shown in the right side of
Fig. 5. These elements are linked by a transitive part-of rela-
tion. This allows to query for combinations of these levels, e.g.,
to search for all maps of a kitchen in Karlstrasse, Munich, or for
all rooms on the third floor of Karlstrasse 45. It further allows
to combine labels, such as room numbers, with types of rooms
(since private homes usually do not have room numbers) and
to attach multiple labels to the same physical entity (Karlsplatz
and Stachus are two names for the same square in Munich).
This flexible representation supports both the spatial hierarchy
(city—street—building), the semantic/generalization hierarchy
(room—kitchen), and different labels for the same room.

VII. MATCHING REQUIREMENTS TO CAPABILITIES

In order to find out if the robot has all prerequisites for exe-
cuting a recipe or, if not, whether missing components can be
downloaded from ROBOEARTH, the systemmatches the require-
ments of the action recipe to the robot’s capability model. While
this procedure cannot guarantee successful task execution, it
can at least determine if components are missing and need to be
retrieved. The matching process is realized using the Semantic
Robot Description Language (SRDL) [23] and visualized in
Fig. 6. The robot first queries for an action recipe and, together
with the query, sends a description of its own capabilities to the
inference engine, which then checks whether all requirements
of the recipe are available. At first sight, the robot may find the
EnvironmentMap to be missing, as it is neither available on the
robot nor in the ROBOEARTH database. Using knowledge that
both a 2DLaserScannerMap and a 3DLaserScannerMap are
specializations of an EnvironmentMap, it can infer that both
can be used to fulfill the dependency. It recursively checks
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Fig. 6. Matching requirements of action recipes against robot capabilities to
determine which further information is still missing and has to be downloaded.
The matching becomes more flexible by taking the robot’s knowledge into ac-
count and selecting the 2DLaserScannerMap to fulfill the general requirement
on an EnvironmentMap.

their dependencies and finally selects the 2DLaserScannerMap
whose dependencies are available on the robot. The matching
process is continued until the system finds a combination of
action recipes, object- and environment models that does not
have any unmet dependencies, or until all alternatives are
exhausted and no solution could be found.
This matching procedure is realized by a set of Prolog rules

which read all available components by searching along the
robot’s kinematic structure (comp available(Robot, CompT)),
and all capabilities which are either asserted to be available on a
class of robots or a robot instance, or inferred to be available be-
cause they solely depend on available components or capabili-
ties. The following code examples have been slightly simplified,
the full source code is contained in the mod srdl package.4

cap available(Cap, Robot) :-

owl has(Robot, hasCapability, SubCap),

owl subclass of(SubCap, Cap).

cap available(Cap, Robot) :-

rdfs individual of(Robot, RobotT),

class properties(RobotT, hasCapability, SubCap),

owl subclass of(SubCap, Cap).

cap available(Cap, Robot) :-

4http://ros.org/wiki/mod_srdl

forall(class properties(Cap, dependsOnComp,
CompT),

comp available(Robot, CompT)),

forall(class properties(Cap, dependsOnCap,
SubCap),

cap available(SubCap, Robot)).

The required comp predicate collects the set of components that
the action itself, any of its subactions, or any required compo-
nents or capabilities depend on (analogous for capabilities):

required comp(Act, Comp) :-

plan subevents recursive(Act, SubAct),

class properties(SubAct, dependsOnComp, Comp).

required comp(Act, Comp) :-

required cap(Act, Cap),

class properties(Cap, dependsOnComp, Comp).

Based on these rules, missing components and capabilities can
be defined as “required and not available,” and the feasibility
of an action as “does not depend on any missing capabilities or
components”:

missing comp(Act, Robot, Comp) :-

required comp(Act, Comp),

not(comp available(Robot, Comp)).

action feasible on robot(Act, Robot) :-

not(missing cap(Act, Robot, )),

not(missing comp(Act, Robot, )).

These rules appear very simple because they make use of the
specialization hierarchy (inherited dependencies) and composi-
tion hierarchy (dependencies of subactions) in the action rep-
resentation as well as transitivity of the sub component pred-
icate operating on the robot’s kinematic structure. While the
above matching example only requires information about the
asserted subclass hierarchy, the actual matching procedure sup-
ports dependency specifications that make full use of the expres-
siveness of OWL class restrictions which are evaluated by the
owl individual of and owl subclass of predicates.

VIII. COMMUNICATION WITH THE ROBOEARTH
KNOWLEDGE BASE

Once the missing pieces of information have been de-
termined, the robot searches for them in the ROBOEARTH
knowledge base. A communication module provides methods
for up- and downloading information using HTTP requests
and encapsulates the communication with the web-based
ROBOEARTH knowledge base. The communication package
further provides methods for updating existing knowledge, for
instance an environmental map with updated object positions
or an improved action recipe. There are different possibilities
for sending queries to the knowledge base: If the identifier of
an action recipe, object model or environment map is known,
e.g., because another recipe refers to it, this item can directly be
accessed. Otherwise, queries are sent as a logical specification
of the properties a recipe or model needs to have. For example,
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the robot may search for a recipe that describes a Serving task
with a Bottle as objectActedOn, and, as a result, get all recipes
describing specializations of such a task.

IX. EXECUTION OF ACTION RECIPES

Having downloaded abstractly specified instructions from
ROBOEARTH, the robot has to ground them in calls to executable
program code. Complex tasks are decomposed into more and
more basic actions until executable primitives for the actions
are available. There is intentionally no predefined level of
granularity at which this transition takes place to let the system
support large, monolithic implementations of functionality as
well as setups with a large number of small components. The
same high-level recipe can be executed in different setups by
downloading more fine-grained action recipes until executable
primitives are available for each action.
The execution of action recipes can be realized using dif-

ferent techniques; system integrators can create their own ex-
ecution engine interpreting the task descriptions in an action
recipe. We created a reference implementation of an execution
engine [28] based on the Cognitive Robot Abstract Machine
framework (CRAM) [29]. In this implementation, action recipes
are translated into robot plans described in the CRAMPlan Lan-
guage (CPL). Compared to the OWL-based language for action
recipes that is optimized for reasoning and for integrating infor-
mation sources, CPL specializes on the execution of plans. The
CRAM system offers sophisticated techniques for failure moni-
toring and recovery and for choosing suitable action parameters.
In action recipes, parameters like the locations where objects are
to be placed are described using abstract specifications like “in
reach of the patient.” CRAM provides methods for generating
metric positions that comply with the abstract specification [30].

X. EVALUATION

This paper describes a system for representing, exchanging
and reasoning about high-level task descriptions, object models,
and semantic environment maps in a common semantic frame-
work. A quantitative evaluation of such a system is hardly pos-
sible: Most task-related performance measures, like the execu-
tion time, rather describe the performance of external factors
like the hardware of the executing robots than the representa-
tion language. The times needed for download and inference
depend on the size and complexity of the task description and
the robot model. In our experiments with the PR2 (whose model
describes 158 components) and the drink-serving task, finding
the recipe in the database including capability matching took
about 1.41 s, its download another 1–2 s. The system can fur-
ther be evaluated on qualitative criteria: Is the representation
expressive enough to encode all important kinds of informa-
tion? Are all of the necessary reasoning tasks supported? Which
level of autonomy can be achieved? We thus investigated how
the ROBOEARTH language can enable robots to perform tasks in
a previously unknown environment. The experiment included
two heterogeneous robot platforms, a PR2 and an Amigo robot,
operating at two different locations that were previously un-
known to them. Using information fromROBOEARTH, they were
supposed to serve a drink to a patient in bed, which involved

navigating to a cabinet, opening it, taking the drink out of it,
and handing it to the patient.
Although both environments had a different spatial layout,

they shared common pieces of furniture, for instance the same
type of cabinet. This allowed sharing object-related informa-
tion across environments: When the first robot performed the
task, it did not know about the articulation properties of the
cabinet door. It thus estimated the type and pose of the joint,
attached this information to the object model and uploaded it
to the ROBOEARTH knowledge base. While an object instance
is environment-dependent, the model is self-contained and can
therefore be applied to objects in different scenes, which al-
lowed the second robot to open the door. Without this model, it
would not have been capable of doing that since it did not have
a compliant arm. The upper part of Fig. 7 shows the environ-
ment maps that were downloaded from ROBOEARTH. The fol-
lowing query was used to download the map information using
the SeRQL [31] query interface5 offered by the ROBOEARTH
knowledge base:

select source from context source

kr:describedInMap ;

kr:roomNumber

where N like “3001”

using namespace

http://ias.cs.tum.edu/kb/knowrob.owl# ;

Based on this map, the robots (Fig. 7 bottom) could navigate
to the appropriate positions and locate the objects required for
the task. The action recipe to be used was selected using the
following query:

select source from context source

rdfs:label “serve a drink”^^xsd:string

using namespace

http://www.w3.org/2000/01/rdf-schema#

The action recipe was then matched against the robots’ capa-
bilities with the result that all required capabilities were avail-
able, but some recognition models for some of the objects men-
tioned in the task were missing (namely, the bottle and the bed),
which had to be downloaded, including the CADmodels shown
in Fig. 7. The following CPL plan was then generated from the
action recipe:

(def-top-level-plan serve-a-drink ()

(with-designators (

(bottle1 (object ’((name bottle1)

(type drinking-bottle))))

(bed1 (object ’((name bed1)

(type bed_piece-of-furniture))))

(hand-pose-handover1 (location ’((on, bed1))))

(robot-pose-handover1 (location ’((to reach)

(side :right)

(loc, hand-pose-handover1))))

5http://api.roboearth.org
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Fig. 7. Top: Semantic environment maps of the two hospital rooms, down-
loaded from ROBOEARTH based on the address and room number. Bottom: PR2
and Amigo robots opening the cabinet and picking up the drink to be served.

(arms-at101 (action ’((type trajectory)

(pose, hand-pose-handover1)

(side :right))))

(unhand-action102 (action ’((type open-gripper)

(side :right))))

)

(achieve ’(object-in-hand, bottle1 :right))

(at-location (robot-pose-handover1))

(achieve ’(arms-at, arms-at101))

(achieve ’(arms-at, unhand-action102))))

XI. DISCUSSION

Since the first version of this paper, the described methods
have been applied to other tasks and domains, for example to
enable robots to interact with customers in a convenience store
[32]. The implemented recommendation tasks did not involve
mobile object manipulation, but other challenges like interac-
tion with customers and question answering based on the robot’s
knowledge about objects and on the semantic environment map.
ROBOEARTH has been used for exchanging the required task-,
object-, and environment knowledge. Especially the behavior
definition in a recipe (instead of compiled program code) and
the modularity of spatial, semantic and action-related knowl-
edge was very important in this scenario to facilitate the modi-
fication of robot behavior and deployment on several robots.
While we have so far focused on the technical realization of

the representation language and reasoning modules described
in this paper, there are several open research issues related to
the ROBOEARTH vision of a World-Wide Web for robots. For
example, the current language for action recipes is limited to
symbolic action descriptions. Describing lower level motions,
accelerations and forces would however allow the exchange of
novel actions that are not available as executable modules on
the target robot. One option that we are currently exploring is to
include symbolic motion constraints that can be interpreted by
a motion controller [33].
Once ROBOEARTH grows to many users, scalability will also

become an issue—not only regarding the infrastructure, but also

for managing the quality of the stored information: Which mea-
sures are needed to keep a large crowdsourced database struc-
tured? Which kinds of information do users actually want to
share? Is the language expressive enough for all of them? Can
the quality and safety of the information in the database for
example be ensured by a rating system based on robot experi-
ences? Are human moderators needed? How does a robot rank
and select information if there are multiple alternatives, e.g.,
hundreds of models for different kinds of cups and bottles?
These research questions are not yet addressed by the cur-

rent version of the system, though solutions to at least many
of them will be needed for a usable and scalable crowdsourced
robot knowledge base. The relevance of the individual aspects
will also become clearer once first experiences in larger settings
and with more robots have been collected. We hope that tech-
niques that proved successful for human crowdsourcing can be
applied in a modified form, also exploiting opportunities par-
ticular to the robot setting. For example, ratings of downloaded
information can be automatically given, and robots can upload
a detailed record of their experiences with executing a task.
Another interesting research opportunity that will arise once

the ROBOEARTH system includes a substantial amount of data
is learning on the database. Massive amounts of data about en-
vironments, objects and action log data could enable robots to
learn typical object locations, success models of plans given
the context, common execution failures, timing information, or
promising plans for a given robot platform.

XII. CONCLUSION

In this paper, we discussed the requirements of a formal lan-
guage for representing robot knowledge with the intention of
exchanging it, and presented our approach to realizing such a
language. The language allows to describe actions, object recog-
nition and articulation models, as well as semantic environment
maps, and provides methods to reason about these pieces of in-
formation. Using the language, robots can autonomously decide
if they lack any capabilities that are needed to perform an ac-
tion, and if so, see whether they can download software to ac-
quire them. ROBOEARTH thereby acts as a complement, not a
substitute of existing control structures: If applicable informa-
tion can be found, it will help a robot with its tasks—if not, its
queries will fail and it will be in the same situation as without
ROBOEARTH.
The language and the accompanying reasoning methods have

successfully been used to exchange tasks, object models, and
environment maps among physical mobile manipulation robots
and to execute the abstractly described task. The experiments
showed that the presented methods enable robots to download
the information needed to perform a mobile manipulation task,
including descriptions of the actions to perform, models of the
objects to manipulate, and a description of the environment,
from the ROBOEARTH database on the Internet.
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