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Abstract— We propose a method to learn the partially-
ordered structure inherent in human everyday activities from
observations by exploiting variability in the data. Using statisti-
cal relational learning, the system extracts a full-joint probabil-
ity distribution over the actions that form a task, their (partial)
ordering, and their parameters. Relevant action properties and
relations among actions are learned as those that are consistent
among the observations. The models can be used for classifying
action sequences, but also for determining which actions are
relevant for a task, which objects are usually manipulated, or
which action parameters are typical for a person. We evaluate
the approach on synthetic data sampled from partial-order trees
as well as two real-world data sets of humans activities: the
TUM kitchen data set and the CMU MMAC data set. The
results show that our approach outperforms sequence-based
models like Conditional Random Fields for activities that allow
a large degree of variation.

I. INTRODUCTION

When observing people cooking the same meal, one will
notice a large variability in how they perform the different
actions: Some people first prepare all the tools and ingredi-
ents, others start to cook right away and get the things they
need just in time. In addition, people get distracted, perform
irrelevant actions in between, or forget something they need
make up for later on. As a result, the observations differ in
terms of which actions have been performed, in which order
they have been done, and what their parameters have been.

This high degree of variability is caused by the relative
freedom in how many tasks can be performed: Though
humans tend to describe them as sequences, there are in
fact much fewer constraints, and instead of a total ordering
among the actions (like in a sequence), many everyday tasks
require only a few partial ordering constraints among their
sub-actions. In some cases, these ordering constraints are
linked to causal dependencies, e.g. when one action depends
on the outcome of another, but some also result from person-
specific habits or preferences. Both can be interesting: When
planning robot actions, a model of the dependencies among
actions can be used to determine independent sub-actions and
use the gained freedom for optimization. When observing
human actions, such models can describe the different styles
and be used to spot differences and anomalies, for example
caused by medical conditions.

In this paper, we propose a method for learning such action
models from observation. Given a diverse training set of
observed actions, we can exploit the variability in the data to
learn about the structure and properties of the task. The more
diverse the training set is, the more alternative ways of how
to perform a task can be learned. Those actions, properties
and relations that consistently appear in many examples will
have a higher likelihood to be relevant for the task than those
that are only incidentally observed.

The models represent a joint probability distribution over
the types of actions, their parameters (like the hand that is
used or the object that is manipulated), and their pairwise
ordering. Combined, these pairwise ordering constraints re-
sult in a partial order imposed on all actions in a task.
In order to learn such models from noisy, uncertain ob-
servations, one needs to be capable of representing both
relational knowledge and uncertainty, which is why we use
statistical relational learning techniques. Our implementation
uses Bayesian Logic Networks (BLNs, [1]), which are a
relational extension of Bayesian Networks.

The learned full-joint probability distribution can be used
for various inference tasks:

• Classification of activities by checking which con-
straints are satisfied

• Verification if an action has been performed correctly
with respect to a reference model

• Identification of relevant actions in the activity as those
that consistently appear in the training data

• Inferring missing information like the type of an action
or object given the overall activity model

• Manual analysis of the learned models can give impor-
tant insight into how a person performs a task

The remainder of the paper is organized as follows:
We start with a review of related work on modeling and
recognizing partially ordered activities, and formally describe
the representation of actions in the system and the statistical
relational learning techniques we are using. We then evaluate
the approach on a synthetic and two real-world data sets and
finish with a discussion of its scalability and generalization.



II. RELATED WORK

the common approach when modeling and recognizing
human activities is to model the observed sequences directly,
often using techniques such as Hidden Markov Models
(HMMs) [2], Conditional Random Fields (CRFs) [3] or Suf-
fix Trees [4]. These models describe the observed sequences
in terms of local action transitions, which works well for
largely sequential activities, but has problems once the order
of actions is not that well-determined any more: Even if only
a few actions can be performed at almost any time during
the task, they will create a large number of possible local
transitions that confuse sequence-based methods. Also, the
Markov assumption that the following action only depends
on the current one does not hold for many such activities, in
which the history of which actions have already been done
needs to be taken into account.

There are few other systems in the area of action recog-
nition that also address the problem of learning models of
partially ordered tasks: Shi [5] uses (manually specified)
Dynamic Bayesian Networks to represent the partial or-
der. Gupta [6] describes a method for learning story lines
of actions in baseball games using an AND/OR graph.
Ekvall [7] learns deterministic ordering constraints from
multiple observations in a blocks-world setting. All these
approaches focus on only the ordering among atomic action
entities, while our system learns a distribution over the order
as well as the action parameters.

In the fields of planning (e.g. [8]) and plan recognition,
there is much work about partially ordered plans. Kautz
and Allen’s seminal paper [9] formalizes plan recognition
as a logical inference problem. Goldman et al. [10] extend
this work to a probabilistic model that can handle partially
ordered and interleaved plans. Both approaches, as well as
more recent ones, rely on a manually created model of the
complete task and have mainly been applied to synthetic
problems. Research in preference learning also deals with
learning and representing orderings, though ’partial order’
in that context usually refers to a total order among the top-
k elements in a set, as opposed to a partial ordering of the
complete set.

III. DESCRIBING THE STRUCTURE OF TASKS

The proposed system is to learn a partially-ordered model
of a task T from a set of observed action sequences S that
are assumed to be instantiations of the abstract task. Action
sequences are described as

S = {ST
s |ST

s = 〈a0, a1, . . . 〉} (1)

These actions can have different lengths due to missed
actions as well as noise actions in between the relevant ones,
and are also expected to show strong variation regarding
the order of actions. The abstract model learned from these
actions describes a set of tasks T , each of which is described
by a set of actions At, a possibly empty set of action
properties Pt and an ordering relation Ot among the actions.

T = {Tt|Tt = 〈At,Pt,Ot〉} (2)

Fig. 1. Describing the partial order in the sequence 1− 2− 3− 4− 5 by
pairwise precedence relations.

Observed actions in an action sequence are marked with a
subscript index ai, the prototypical actions in a task model
have a superscript index ai. Action sequences are related to
tasks via the activityT predicate.

activityT (ST ) = T (3)

Each task model comprises a set of n actions, which have
one of m different types A0, . . . Am

At = {a0, a1, . . . , an} (4)

∀i ∈ [0, n] : actionT (ai) ∈ {A0, A1, . . . , Am} (5)

Actions may have different properties like the object
manipulated or the hand used. Pt assigns a probability value
to each property πj ∈ Π of each action ai:

Pt : At ×Π→ [0, 1] (6)
Π = {π0, π1, . . . , πp} (7)

Pij = P (πj(a
i) = True) (8)

The ordering relation Ot for a task T describes the proba-
bility that an action ai is executed before an action aj in the
respective task context.

Ot : At ×At → [0, 1] (9)

In our system, both Pt and Ot are described using prob-
abilistic relations that are learned from the training set of
sequences ST

train and described as predicates combined with
a probability that this relation holds. The relative ordering
of two actions is expressed using the precedes predicate
(Figure 1):

∀ai, aj ∈ Ss : (i < j)⇔ precedes(ai, aj , Ss) (10)

Observations are described using the same predicates for
describing the types of actions involved (actionT ), their
ordering (precedes) and optionally their parameters (e.g.
objectActedOn).

activityT (Act0) = MakeToast

∧ actionT (N1) = N1 ∧ objectActedOn(N1, O1)

∧ objectT (O1) = O3

∧ actionT (N2) = N3 ∧ actionT (N3) = N4 . . .

∧ precedes(N1, N2, Act0) = True

∧ precedes(N1, N3, Act0) = True ∧ . . .



IV. BAYESIAN LOGIC NETWORKS

In this paper, we are using Bayesian Logic Networks
(BLNs) [1] to represent the aforementioned action structures.
BLNs are a form of probabilistic logics and combine the
expressiveness of first-order logics, required to describe the
complex interactions between actions, parameters of these
actions, with the representation of uncertainty. A BLN serves
as a template for the construction of a ground mixed network
to which standard Bayesian network inference techniques
can be applied. For our experiments, we use the Backward
Sampling algorithm [?] with 5000 samples drawn during
inference. Due to space limitations, we will only briefly
describe BLNs and refer to [1] for details.

Formally, a BLN is described as a tuple B = (D,F ,L)
consisting of the declarations of types and function D,
a set of fragments of conditional probability distributions
F , and a set of hard logical constraints L as formulas
in first-order logic. The fragments F describe dependen-
cies of abstract random variables, in our case for instance
between precedes(ai, aj , Ss) and actionT (ai). Compared
to Bayesian Networks, BLNs abstract away from concrete
entities and represent generic relations between classes of
entities, similar to the way predicate logic abstracts away
from the concrete entities in propositional logics. Examples
of the BLN fragments are shown in Figure 3, where the oval
nodes denote random variables and the rectangular nodes
contain preconditions for the respective fragments to be
applicable.

For a given set of entities (in our case observations of ac-
tions), the BLN gets instantiated to a ground mixed network,
expanding the abstract relations with the concrete domains of
e.g. actions and objects. Learning BLNs requires determining
the conditional probability tables in the fragments in F ,
which reduces to simply counting the relative frequencies
of the relations in the training set.

The declarations D, the fragments F and logical con-
straints L are defined manually. Note that this manual speci-
fication does not describe the set of actions, objects, or their
ordering relations, as it would be required by a classical DBN
approach. Since BLNs are relational models, it is sufficient
to describe general relations (such as “an action can precede
another action, and this relation is influenced by the types of
objects that are manipulated”) as visualized in Figure 3. The
final structure, including the sets of actions and objects and
the conditional probabilities, is then automatically learned
from data.

V. EXPERIMENTS

We evaluate the system first on synthetic data, and then on
two real-world data sets of human activities. Due to space
limitations, we unfortunately cannot show each aspect of
evaluation for all of the datasets.

A. Synthetic Data

First, we tested the approach with synthetic data sequences
that have been sampled from the two precedence graphs in
Figure 2. Note that both graphs consist of the same basic

Fig. 2. Precedence graphs for the fictional activities MakeCoffee (left) and
MakeToast (right) which were used for sampling the synthetic action data .

actions, i.e. no single action can be used as a hint which
activity is performed, but only the order contains informa-
tion. This is certainly more difficult than most real-world
applications, but required, for instance, when distinguishing
between different styles of performing the same activity.

The sampling is performed using the following procedure:
Let N represent the set of nodes whose ordering constraints
are met and who can thus be selected in the next step, and
let prereq(n) be the set of nodes that are prerequisites for
node n. The sampling starts with the set of nodes

N0 = {nn : ∀nk 6= nn ⇒ nn /∈ prereq(nk)}, (11)

thus the set of all actions that are not prerequisites for any
other action. At each sampling step i, a random element ni
is chosen, and the sampling continues with

Ni+1 = (Ni ∪ prereq(ni)) \ ni (12)

All actions occur exactly once in this data set, thus for both
graphs is m = n = 8, and there are no action properties, i.e.
P = ∅. The data can be modeled with the very simple BLN
in Figure 3 (left).

Fig. 3. The model structure for the synthetic data (left) and the TUM
kitchen data (right) with dependencies as conditional probability distribution
fragments.

1) Learning the partial order: The learning algorithm
should be able to recover the partial order from the data.
Figure 4 visualizes the conditional probabilities inside the
precedes-node of the BLN. In this visualization, redundant
relations have been pruned, i.e. when P (precedes(A,B)) =
1, P (precedes(A,C)) = 1 and P (precedes(B,C)) = 1,
we did not draw the edge A−C to improve clarity. As can
be seen in the picture, the algorithm successfully recovered
the partial-order structure the data was sampled from.

Interconnections between for instance the nodes N1, N2,
N3, and N4, which are not present in the original graph,
reflect the properties of the sampling algorithm. It is equally
likely to switch to a different branch of the activity (i.e.
between N1−N2 and N3−N4) and to continue the same
branch. In observations of humans, such interconnections
reflect an alternating behavior, as opposed to a stringent
execution of each string of actions.



Fig. 4. Learned dependencies in the synthetic data set, the thickness of the
lines depicts the probability that one action is performed before another. The
partial-order structure could successfully be recovered from the observed
data.

2) Classification in the presence of noise: Observations
of activities often comprise irrelevant actions that are per-
formed in between the essential actions, like wiping up
spilled liquids or drinking a glass of water while cooking
a meal. Similar action noise can result from errors in the
segmentation of observations into single actions.

To test the influence of irrelevant actions in between
the important ones, we modified the sampling algorithm
described earlier so that, in each step, a noise action may be
chosen instead of one of the relevant actions with a certain
probability. Formally, equation (12) changes to

Ni+1 = (Ni ∪ prereq(ni) ∪ X ) \ ni (13)

where X is a set of noise actions, i.e. actions that are irrel-
evant to the activity. In the experiments, we sampled from
‖X‖ = 10 noise actions, denoted x0 . . . x9, with a probability
of 10%, 20% and 50% respectively. The sequences in both
the training and the testing set comprised these noise actions,
so the system did not know a priori which actions are actually
relevant.

Figure 5 (right) shows the classification performance (F1
value) of our system. The results were obtained by approxi-
mate inference on the BLN model using Backward Sampling
with 5000 samples (note that this is not the size of the
training or testing database, but the number of samples drawn
by the Bayesian network inference algorithm). Even with the
very noisy sequences, in which about half of the actions are
irrelevant to the activity, the system is still able to learn a
model that allows for good classification. If there is few noise
(lines without markers), as few as five example sequences
suffice for reasonable performance, while the more noisy data
requires about 15 sequences to obtain similar results.

We compare the classification results to those obtained
using Hidden Conditional Random Fields (HCRF, [11]),
which have shown to outperform Hidden Markov Models
and Conditional Random Fields, the probably most common
methods in action recognition. HCRF model the sequence
of actions, but cannot take longer-range dependencies like
global ordering constraints into account. The results in
Figure 5 suggest that the model gets confused by the large
variation in the data and the significant amount of noise.
While the results are still rather stable for low-noise data
(lines without markers), they get much worse when the
proportion of irrelevant actions increases.

3) Inferring the types of single actions: Since the models
learn a joint probability distribution over all aspects of the
action, they can be used for different inferences, for example
to infer the most likely type of a single action in a sequence:

argmax(P (actionT (ai)|ST )) (14)

We randomly sampled sequences from the nosiest version
of both activities (50% noise actions), removed the type of
an arbitrary action in the test sequence, and inferred this
type given the rest of the sequence. The exemplary results
in Table I show that it is possible to infer the type of an
action given the type of the activity and the surrounding
actions. The results also indicate that the model has learned

ID activityT actionT most likely types
12 MakeCoffee N8 N8(0.5760), N7(0.4135), X5(0.0042)
25 MakeCoffee N7 N7(0.4837), N5(0.2022), N6(0.0846)
33 MakeCoffee N8 N8(0.7667), N7(0.2211), X5(0.0117)
43 MakeCoffee N1 N1(0.5303), N3(0.4243), N2(0.0447)
24 MakeToast N6 N6(0.2867), N3(0.2498), N7(0.1395)
37 MakeToast N4 N4(0.5940), N1(0.3800), N5(0.0220)
48 MakeToast N4 N4(0.3950), N2(0.2860), N5(0.1860)

TABLE I
INFERRING THE TYPE OF UNKNOWN ACTIONS IN AN ACTIVITY.

which actions are easy to identify. Action N8, for example,
is always the last non-noise action in every sequence and
can thus easily be identified (seq. 12, 33). When there is
confusion, it is mostly between actions on a similar level of
the precedence graph (e.g. N4 and N1 in seq. 37) or between
direct predecessors and successors (as in seq. 25, where N5
and N6 are direct predecessors of N7).

B. TUM Kitchen Data Set

As a real-world data set, we use the TUM Kitchen Data
Set [12] for evaluation which contains several observations of
different subjects performing a table-setting task. In addition
to motion-capture data, it also provides information about
objects that are manipulated (from RFID readings) and doors
and drawers being opened (via magnetic sensors).

In this paper, we do not deal with the problem of seg-
menting the continuous motion, but rather use the manually
created labels provided with the data set. Inferring these
segments from the data is a challenge by itself, and some
first work on this topic has been presented by the authors of
the data set [12].

All subjects perform the same activity (setting the table for
one person), using the same objects, but in different order:
Some behave like an (inefficient) robot that transports the
objects one-by-one, others are more human-like in carrying
several objects at once. On the one hand, this makes this
data set quite structured, but on the other hand, it creates a
difficult classification challenge since all objects and actions
are identical for all classes.

In total, there are m = 8 types of actions like Reaching or
OpeningACupboard, and the observation sequences have a
length of about 70 action segments. P = {objectActedOn},
the object an action is performed on, is the only property. The
BLN structure for this data set is shown in Figure 3 (right).



Fig. 5. Recognition rates (F1 value) on synthetic data with different noise levels (10%, 20% and 50% probability of choosing a noise action) and sizes
of the training and testing set (5 to 50 samples, see x-axis). Left: HCRF. Right: BLN (our approach).

Visualizing the learned model is difficult since the ob-
ject type influences the order. However, when plotting the
conditional probability for each action a1 over the object
o1 × the subsequent action a2 with object o2, a peaked,
sparse distribution can be observed (Figure 6). Many values
are zero because several object-action pairs never occur (like
opening a knife). Some actions always occur before others
(conditional probability of one), others have softer ordering
constraints as can be seen by the lower peaks in the diagram.
We noticed in our experiments that such sparse, peaked
distributions are typical for problems that show a distinct
partial order.

1) Classification performance: We tested the model by
discriminating between two different styles of setting the
table, in the following referred to as robot-like (transporting
one object at a time) and human-like (a more natural behav-
ior, including e.g. grasping all pieces of silverware at once).
Due to a lack of data, the test sequences were manually
created and covered different cases: A typical example of
each activity style similar to the training data, changing
the order of the transported objects, adding noise actions,
and shorter sequences where some object interactions were
omitted. One sequence (HumanRobot) was constructed by
concatenating the first half of a human-like and the second
half of a robot-like sequence.

Table II presents the inference results obtained using Back-
ward Sampling with 5000 samples and, as a comparison, the
classification obtained from the HCRF (identical results for
m = 3, 5, 10, 20 hidden states). Features for the classification
were the action class and the object.

The HCRF fails to classify the sequences and labels all
of them as Human, supposedly because it did not learn
the subtle differences in the ordering. Our system correctly
classified almost all the sequences, only the HumanRobot
sequence was classified as Human, whereas an indecisive
result would have been expected. Apparently, the parts of
the Human sub-sequence are more salient than those in the
Robot part of the sequence.

As mentioned before, all actions and objects are identical
for both classes and only the order differs. In other cases,
the distinction between different activities would obviously
become much easier.

C. CMU MMAC Data Set

The CMU MMAC Data Set [13] provides observations of
43 subjects cooking 5 different recipes. So far, only part of
the data has been labeled, namely a subset of the ’making
brownies’ and the ’cooking an omelette’ recipes, which we

BLN HCRF
activityT SttHuman SttRobot SttHuman SttRobot
Human1 1.0000 0.0000 1 0
Human2 1.0000 0.0000 1 0

Human1short 1.0000 0.0000 1 0
HumanRobot1 1.0000 0.0000 1 0

Robot 0.0009 0.9991 1 0
Robot1 0.0001 0.9999 1 0

Robot1short 0.2678 0.7322 1 0
Robot1noisy 0.2680 0.7320 1 0

TABLE II
CLASSIFICATION RESULTS OF DIFFERENT TABLE-SETTING TEST

SEQUENCES. CORRECT RESULTS ARE PRINTED IN BOLD FONT.

use for learning the models. On this data, we will present
some queries that show that the models do not only represent
the ordering, but a complete joint probability distribution
over different aspects of the observed actions.

1) Identifying (ir)relevant actions and objects: A priori,
the system does not know which actions or objects are rele-
vant for a task. Using the proposed models, the probability of
an action or object given the activity can be calculated. Those
actions that occur several times per activity obviously have a
higher probability, and those that are only rarely performed
are much less likely.

P(actionT(A1) | inActivity(A1, Act)=True
∧ activityT(Act)=MakingBrownies

=〈 TakingSomething:0.25,
PuttingSomethingSomewhere:0.15, Pouring:0.13,
OpeningSomething:0.13, ClosingSomething:0.08,
Stirring:0.08, Walking:0.03, TurningOnDevice:0.04,
Reading:0.03, [...] 〉

P(objectActedOn(A1) | inActivity(A1, Act)=True
∧ activityT(Act)=CookingOmelette

= 〈 Egg-Chickens:0.19, Cupboard:0.15, FryingPan:0.12,
VegetableOil:0.08, TableSalt:0.06, Bowl-Mixing:0.05,
Fork-SilverwarePiece: 0.05, [...] 〉

2) Person-specific preferences: Some subjects put the
frying pan back onto the stove, others put it into the sink after
finishing cooking. Such preferences are implicitly learned by
the models.

P(doneBy(A1) | inActivity(A1, Act)=True
∧ activityT(Act)=CookingOmelette
∧ actionT(A1)=PuttingSomethingSomewhere
∧ objectActedOn(A1)=FryingPan

toLocation(A1)=Sink)
= 〈 P3: 0.32, P5: 0.31, P4: 0.18, P0: 0.17 〉



Fig. 6. Conditional probability distribution of the precedes-node in the TUM data set. Each curve corresponds to the first action in a pair (a1), the values
on the x-axis denote the set o1 × a2 × o2, and the value of the curve is the conditional probability that a1 performed on o1 precedes a2 performed on
o2. The very peaked distribution indicates distinct ordering constraints.

The subjects P3 and P5 put the frying pan into the sink
several times while cooking in order to drain some spare oil.
The remaining subjects put the pan back onto the stove and
not into the sink.

VI. DISCUSSION

As we demonstrated in this paper, human everyday ac-
tivities like for household activities, assembly tasks in a
factory, or games show a significant partial ordering among
their actions. However, this is not reflected in many of
today’s data sets, because the actions are often recorded in
a very controlled setting where their sequence is completely
determined so that a total ordering is artificially imposed
and no dependencies between the actions can be learned.
Also lower-level data, e.g. observations on the motion level,
often shows a more linear structure since, in smooth motions,
subsequent poses mainly depend on the previous ones and
less on the global task context. This is why models that are
based on the Markov assumption (HMM, CRF) work fine
for this kind of data.

Regarding scalability, models that represent a partial or-
der are more complex compared to those describing only
a sequence, theoretically scaling quadratically with in the
length of the sequence, the number of actions and the
parameters. In practice, however, the conditional probability
table representing the precedence relation is often sparse:
Many combinations of actions and objects do not make
sense and thus have zero probability, so that the table can
efficiently be represented using decision trees [14]; see also
Figure 6. Even without such optimizations, our implemen-
tation smoothly handles inference in models of about 40
segments with about 10 action and object classes. Compared
to the inference, learning BLNs is generally much less of a
problem because parameter learning of Bayesian networks
comes down to counting. Training on 20,000 sequences runs
very fast without problems.

VII. CONCLUSIONS

In this paper, we presented a system for modeling human
activities based on Bayesian Logic Networks. The models
are learned from observations and represent a full-joint
probability distribution over the actions, their properties and
their (partial) ordering. Therefore, they can not only be
used for classifying activities, but also for more advanced
reasoning on action-related properties.

We evaluated the system on two real-world data sets of
human activities as well as synthetic data in order to analyze
in detail the properties of the learned models. This evaluation

shows that the approach outperforms models often used
in activity recognition like Conditional Random Fields for
common tasks since they are much less confused by the
variation inherent in human activities.
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