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Abstract—This paper describes a textureless object segmenta-
tion approach for autonomous service robots acting in human
living environments. The proposed system allows a robot to
effectively segment textureless objects in cluttered scenes by
leveraging its manipulation capabilities. In our pipeline, the
cluttered scenes are first statically segmented using state-of-the-
art classification algorithm and then the interactive segmentation
is deployed in order to resolve this possibly ambiguous static
segmentation. In the second step the RGBD (RGB + Depth)
sparse features, estimated on the RGBD point cloud from the
Kinect sensor, are extracted and tracked while motion is induced
into a scene. Using the resulting feature poses, the features are
then assigned to their corresponding objects by means of a graph-
based clustering algorithm. In the final step, we reconstruct the
dense models of the objects from the previously clustered sparse
RGBD features. We evaluated the approach on a set of scenes
which consist of various textureless flat (e.g. box-like) and round
(e.g. cylinder-like) objects and the combinations thereof.

I. INTRODUCTION

A service robot operating in human environments may be

required to perform complex dexterous manipulation tasks in

a variety of conditions. For example, when setting a table [1]

the robot is likely to be confronted with a cluttered unstruc-

tured scene1 like the example shown in Fig. 1. In order to

successfully perform this task, the robot must be able to detect

the individual objects. Without the ability to interact with the

environment, it is difficult to distinguish between the object

boundaries and texture patterns, particularly in the presence

of objects of similar colors, shapes and sizes.

To demonstrate this we tested three state-of-the-art segmen-

tation algorithms operating in depth, RGB and RGBD space

respectively on the given scene. The results are shown in

Fig. 1. We notice that they are far from being optimal in the

cases of a) same color objects (a coffee mug and a saucer), b)

similar shape objects and occlusions (a white and a blue box),

c) stacked objects (an egg and a plate) and also in the case of d)

a sensor default (cutlery in this case appears transparent to the

Kinect sensor). Following structure from motion approaches,

one could observe the scene from various views and apply

merging of hypotheses. This approach would however fail in

the case of non-navigable spaces for the robot. While one can

certainly fine tune the algorithms’ parameters for a certain

setup and environment, it is easier and arguably more natural

to exploit the robot’s embodiment and interaction capabilities

in order to obtain a better understanding of its environment.

Reaching out to get a sense of what is around is the way how

infants get to know their “near space” according to Piaget’s

1Following the discussion at the Clutter12 workshop at RSS 2012 we
acknowledge that this is a “laboratory clutter” where the degree of difficulty
is similar to the scenes from the related works but still inferior to the real
world clutter.

theory of spatial cognition in the sensorimotor stage (until the

age of 2), and getting a hold of connectivity (i.e. object unity)

is an important factor in the infant’s understanding of objects

at that stage [2].

Fig. 1. Top-left: The service robot PR2 aiming to segment the scene
consisting of textureless object. Results of the scene segmentation using
Region Growing method [3] (top-right, NW), Part-Graph-based Hashing [4]
method (top-right, NE) and Graph-based segmentation method [5] (top-right,
SW). These methods work in depth, RGB and RGBD space respectively
and all underachieve due to the complexity of this challenging task. On the
other hand blue egg on the blue plate was correctly segmented using the
interactive approach presented in this paper (top-right, SE) Bottom row: 3
white objects segmented correctly showing the generality of the apporach for
multiple objects.

Our approach: In this work we focus on proposing a

solution for the cases a), b) and c) from above. Similar to

Katz et al. [6], Bergstrom et al. [7], and our earlier work [8]

we propose a system that uses induced motions in a scene to

enable effective object segmentation. Our system employs a

combination of the following complementary techniques: pre-

segmentation of a raw point cloud of a given scene from

a single camera view using part-graph-based hashing [4],

estimation of a contact point and a push direction of the robot’s

end effector [8], RGBD feature extraction and tracking using

particle filtering-based tracking, graph-based feature trajectory

clustering algorithm, and dense model reconstruction based

on region growing in normal space. There are three important

assumptions in our system. First, that each item is a rigid body

and not subject to large deformations when interacting with

the robot’s end effector or other objects. We also assume that

the objects are either flat (box-like) or round (cylinder-like),

which holds for most household objects in publicly available

databases [9], and that in the tracking step the features do not

get more than 50% obstructed.

The evaluation was performed on 17 scenes with challeng-



ing arrangement of flat and round objects of similar colors,

shapes and sizes. 82% of objects were segmented correctly in

these scenes. Our system is available as open source2 and can

be deployed on a robot equipped with either a 2D-camera and

a depth camera or Kinect camera and at least one arm.

Overall, we present the following main contributions for

the segmentation of scenes consisting of textureless tabletop

objects:

• A set of RGBD features suitable for the tracking of flat

and round textureless object (Sec. V-A);

• A graph-based algorithm for the clustering of 3D-feature

trajectories, in which graph edges measure the dissimilar-

ities between the RGBD features’ distances (Sec. V-C);

• The inclusion of a static scene pre-segmentation algo-

rithm and a probabilistic method for the detection of over

or under-segmentation (Sec. III-B);

• A dense model reconstruction algorithm that makes use

of the already clustered features (Sec. V-D);

• And the integration of all the above into a pipeline using

the Robot Operating System (ROS3) as depicted in Fig. 2.

II. RELATED WORK

Research in passive perception has traditionally focused on

static images and segmented images based on a set of features

such as color [10] or higher order features such as the ones

found in graph cut approaches [11].

This paper focuses on interactive scene segmentation by

adding robotic arm manipulation into the perception loop.

Segmentation of rigid objects from a video stream of objects

being moved by the robot has been addressed by Fitzpatrick

[12] and Kenney et al. [13]. These works are based on the

segmentation of objects from a video stream of a pre-planned

arm motion, use a simple Gaussian model of the color values

to infer the possible motion and a graph cut algorithm for

the final object segmentation. These approaches can deal with

textured as well as textureless objects. In contrast, our arm

motion is not pre-planned but adapts to the scene and we

make use of 3D data to segment the object candidates from

the background.

Both approaches presented in this paragraph work with the

textured objects only. Katz et al. [6] address the problem of

segmenting the articulated objects. A Lucas-Kanade tracker

and a set of predictors (relative motion, short distance, long

distance, color, triangulation and fundamental matrix) are

applied to obtain rigid body hypotheses (in form of a graph)

and a subsequent fixation point on the object. The latter

is used to segment an object based on color, intensity and

texture cues. The major limitation of this approach is the

pre-planned arm motion and the time needed to break the

graph of object hypotheses into the subgraphs using a min-

cut algorithm. Bergstrom et al. [7] propose an approach to

interactive segmentation that requires initial labeling using a

3D segmentation through fixation which results in a rough

initial segmentation. The robot interacts with the scene to

2http://www.ros.org/wiki/interactive segmentation textureless
3www.ros.org

disambiguate the hypotheses. Points in the motion space are

clustered using a two component Gaussian mixture model. A

limitation of the system is in that the number of objects per

scene never exceeds 2.

Some approaches examine how the perturbations can be

planned to accumulate a sequence of motion cues. Gupta et

al. [14] use a set of motion primitives consisting of pick

and place, spread, and tumble actions to sort cluttered piles

of single-color objects. Euclidean clustering is used in the

distance and the color space to classify the scenes as unclut-

tered, cluttered, or piled. Distance-based clustering is limited

as its success is subject to correctly selected threshold. Color-

based clustering may fail in the presence of sudden lighting

changes. Additionally the system assumes that the objects

(duplo bricks) are of a similar size. Chang et al. [15] present

a framework for interactive segmentation of individual objects

with an interaction strategy which allows for an iterative object

selection, manipulation primitive selection and evaluation, and

scene state update. The manipulation primitive selection step

uses a set of heuristics to maximize the push action, however,

it is unclear in how much this component contributes to

the successful segmentation of the objects. The manipulation

primitive evaluation step uses sparse correspondences from

the Lucas-Kanade optical flow tracker and computes a set

of transforms which are color matched against a dense point

cloud. A likelihood ratio of a target being a single item or

multiple items is determined based on the magnitude of the

transform motion and the percentage of dense point matches.

The major limitation compared to our work is that they do not

estimate corner contact points.

There is a corpus of works dealing with the estimation of

the articulation models for drawers, boxes, etc. [16], [17]. The

common problem for both approaches is in that they assume

the presence of a large, moving plane which they can reliably

detect by running e.g. a RANSAC algorithm on the input point

cloud and which unanimously represents the part of the object

they are looking for.

III. SYSTEM AND PRE-PROCESSING

A. System Pipeline
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Fig. 2. System pipeline.

Our approach consists of five main steps as depicted in



Fig. 3. Two test scenes in the top and bottom row respectively. First column: original scenes; second column: extracted RGBD features before the interaction;
third column: parts P from the static segmentation; fourth column: object hypotheses O from the static segmentation; fifth column: tracked RGBD features
after interaction; sixth column: relative distances between the tracked features. Plots with the ramp denote distances between features on different objects and
plots with the constant values denote distance between features on the same object.

Fig. 2 and demonstrated in an accompanying video4. In the

first step we obtain an RGBD point cloud from the Kinect

sensor. In the second step we perform static object pre-

segmentation which results in a set of categorized object

hypotheses O, with the category being either flat or round,

and a list of object parts Po that every object o ∈ O
consists of. Having obtained the object hypotheses O we infer

which hypothesis is segmented correctly. For that we count

the number of parts that the respective object hypotheses O
consists of and then sample from the Poisson distribution

according to the Eq. 1. After obtaining the probability of the

scene being segmented correctly we decide if the interactive

segmentation algorithm should be used or not.

We use categorization of the objects as a prior for tracking

by extracting and tracking line and corner RGBD features

on the flat object hypotheses and circle and cylinder RGBD

features on the round ones in the third step. Finally, we execute

the arm motion movement in 1cm intervals until we reached

a maximum of 5 pushes. All of the features are being tracked

during the interaction and the trajectories of feature centroids

are being saved. Based on relative distances between the

feature centroids, the graph-based algorithm for the trajectory

clustering is applied. The output of the algorithm is the

number of objects belonging to a certain object hypothesis

o and the association between the object number and the parts

p1, . . . , pn ∈ Po that belong to it (fourth step). In the fifth and

the last step the dense model is reconstructed using the region

growing algorithm where the tracked and clustered RGBD

features are used as seed points.

B. Static Pre-segmentation of Objects

In order to achieve a pre-segmentation we make use of the

classification method presented in [4] based on part-graph-

based hashing. The basic idea is that segmenting objects ac-

curately in a cluttered scene does not always yield the expected

result, as seen in Fig. 3 column 4, and can lead to classification

failures, but over-segmenting is easily realizable [18]–[20]. We

use the classification approach described in [4] for categorizing

over-segmented object parts in cluttered scenes by considering

combinations of these parts to compute features and classify

these efficiently with the aid of hashing. The result is a set of

4http://youtu.be/Bu4LayrGC1s

labeled parts with geometric categories that can be grouped in

order to obtain object hypotheses. Based on statistics computed

from the training data on single objects, we can estimate how

likely it is that an object hypothesis is correct.

In the rest of the section we summarize the part-graph-based

hashing algorithm briefly and show how we use it to guide the

interactive segmentation.

1) Decomposition into Part Graphs: In order to find the

parts (p1, . . . , pn ∈ Po) in the point clouds we use the

clustering criteria presented in [20], such that patches with

a small curvature are considered, as shown in Fig. 3 column

3. For each part we subsequently compute GRSD- (Global

Radius-based Surface Descriptor [21]) feature and store it

for later use. We then extract the part neighborhoods by

checking if the physical distance between two parts falls below

a threshold of 2cm (considering Kinect noise level [22]), and

build a connectivity matrix. Starting at each vertex of the

connectivity matrix, we create all the possible groupings up

to a certain size (eight parts in the case of single objects

and four in the case of cluttered scenes) in order to obtain

the “soup of segments”, and create the groups’ hash codes

using isomorphic graph metrics. The hash codes are then used

to further split the feature space ending up with a separate

classifier (nearest neighbors in our case) for each hash code.

During the classification phase we obtain confidence votes

only from those classifiers, which were created for the hash

codes that are found in our scene. Based on these votes a

decision is made upon the class of the segments. For a detailed

description of this approach please refer to [4].

2) Object Part Categorization: The classifier was trained

on a subset of the dataset from [23] as presented in [4]. The

choice of the feature determined for each part, namely the

GRSD- is motivated by the fact that we are dealing with

novel objects not seen before by the classifier, so in order

to successfully categorize them we need to use geometric

features. Additionally, the low dimensionality and additive

property5 make GRSD- a suitable choice for such task.

Objects (o1, . . . , on ∈ O) are categorized in six geometrical

categories: sphere, box, rectangular/flat, cylinder, disk/plate

and other. Doing this we get a better a discrimination between

5If the feature is additive, the descriptor that would be computed for the
object is the same as the sum of the features of its segments.



different objects. After having the results for the six geomet-

rical classes, we merge them together into different object

types considering everything spherical and cylindrical being

round, and disks/plates, flats and boxes as flat objects. With

the category other we thus get three object types, whereas

most household objects fall into the first two [9].

In this paper we omit the category other and use the other

two in order to determine if the interactive segmentation is

needed, and if yes, which RGBD features to extract and track

in the respective part of the point cloud in the given scene.

C. Verification of Correctness of Segmentation

Since the geometric categorization of parts does not give

the correct grouping of these parts to form objects, simply

grouping the parts of the same category together does not

always separate the objects, especially if classification errors

occur too. A method of voting for object centroids followed

by a model fitting step was described in [20], but we assume

having no CAD models for test objects in this paper. We would

also have to consider 6DOF poses, complicating the approach

considerably.

Whereas the segmentation of objects is not uniquely defined,

there are still regularities in the number of parts they are

broken up into. As shown in Fig. 4, the distribution of the

number of different object parts, generated in the training stage

of the part-graph-based hashing algorithm, can be modeled as

a Poisson distribution, with an average error of 1.7% (and at

most roughly 9%).

0 1 2 3 4 5 6 7 8 9 10 11

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Measured Distribution

Flat

Round

Other

Number of clusters per object

0 1 2 3 4 5 6 7 8 9 10 11

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Poisson Distribution

Flat

Round

Other

Number of clusters per object

0 1 2 3 4 5 6 7 8 9 10 11

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Measured Distribution

Flat

Round

Other

Number of clusters per object

0 1 2 3 4 5 6 7 8 9 10 11

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Poisson Distribution

Flat

Round

Other

Number of clusters per object

Fig. 4. Distribution of number of parts (see Fig. 3 column 3) per object and
their approximation with a Poisson distribution.

The Poisson distribution described by Eq. 1 describes the

probability of different number of events occurring in a given

interval, which we interpret here as the number of part

boundaries encountered over the surface of the scanned object.

The parameter λ is the mean of number of parts, which in our

case is 0.876 for flat, 2.166 for round, and 3.317 for other

object types.

P (k parts forming a single object) = λke−λ/k! (1)

This simple model is used to judge if a group of parts of

the same geometric category forms a single object or if the

robot should try to interact with it. We cut the probabilities at

0.3 for flat and 0.15 for round objects.

Example: To demonstrate this, from the right part of Fig. 4

we can deduce that the flat object is most likely to consist of 1

or 2 parts. The test scene with 2 boxes (Fig. 3) was categorized

as one object (column 4), but in column 3 we notice that there

are 6 parts in the scene. The probability for 1 object consisting

of 6 parts is below the 0.3 value according to the Poisson

distribution and clearly indicates an over-segmentation error

and the need for the robot to segment this region interactively.

IV. PUSH CONTACT POINT ESTIMATION

Once the over or under segmented region of interest has

been identified according to the above generated distribution,

the appropriate contact points between the objects in the scene

and the robot’s end effector must be determined. Furthermore,

the direction the robot’s end effector should move must be

chosen.

In this paper we apply our previously developed approach

based on the local concavities [8]. Since most commonly

encountered household items have convex outlines when ob-

served from above, our system uses local concavities in the

2D contour of an object group as an indicator for boundaries

between the objects. The robot separates objects from each

other by pushing its end effector in between these boundaries.

As the implementation details of the corner-based pushing go

beyond the scope of this paper, we refer the reader to [8] for

details.

V. TEXTURELESS OBJECT SEGMENTATION

In this section we describe the selected RGBD features

suitable for the tracking of textureless objects and the particle

filtering-based tracking library. The features are estimated on

the above classified list of object hypotheses O from the

RGBD point cloud. RGB and the depth measurements in the

point cloud are time synchronized and registered. We employ

3D circle and 3D cylinder point cloud features for the round

objects and 3D line and 3D corner point cloud features for the

flat objects. The rationale behind this selection of features is

that they are all fast to compute and yet distinctive enough for

tracking with the proposed tracking algorithm. The latter uses

a combination of the visual appearance and the geometrical

structure of the feature to compute the likelihood function of

the feature hypothesis.

A. RGBD Features

In order to obtain a 3D line point cloud we first find object

edge candidates in the cluttered scene using curvature values

computed in the input point cloud from the Kinect sensor.

Next we fit a line model to the object edge candidates using

RANSAC [24] and finally pad the line with neighboring

points on the object within a radius of 5cm. 3D corner point

clouds are determined using the 3D variant of the Harris

corner detector as implemented in the Point Cloud Library

(PCL)(pointclouds.org) and padded with neighboring points

on the object within a radius of 5cm as well. Padding of both

features is necessary in order to guarantee computation of a

better likelihood function needed by the tracker as explained

in the following subsection. The features are shown in Fig. 3

columns 2 and 5, 1st row.

To obtain a 3D cylinder point cloud, we also use a RANSAC

model which is based on the fact that on a cylinder surface, all



normals are both orthogonal to the cylinder axis and intersect

it. We consider the two lines defined by two sample points and

their corresponding normals as two skew lines, and the shortest

connecting line segment as the axis. Determining the radius is

then a matter of computing the distance of one of the sample

points to the axis. By setting the cylinder axis perpendicular

to the table results are more robust, but is not mandatory.

Finally, the generation of the 3D circle is also done using

RANSAC by projecting a sample point into the 3D circle’s

plane and computing the distance between this point and the

point obtained as an intersection of the line from the circle’s

center with the circle’s boundary, whereas the line is passing

through the projected sample point. The features are shown in

the 2nd row of Fig. 3 columns 2 and 5.

B. Particle Filtering-based Tracking of RGBD Pointclouds

The feature point clouds extracted above are then passed

to the particle filter-based tracker as reference models. The

tracker consists of four steps: i) the above described reference

model selection, ii) pose update and re-sampling, iii) computa-

tion of the likelihood and iv) weight normalization. In the pose

update step we use a ratio between a constant position and a

constant velocity motion model which allows us to achieve

efficient tracking with a lesser number of the particles. In the

re-sampling phase we utilize Walkers Alias Method [25]. The

likelihood function lj of the hypotheses in the third step is

computed as in Eq. 2 and is based on the similarity between

the nearest points pair of the reference point (pj) cloud and

the input data (qj). Similarity is defined as a product of a

term describing the points pair’s euclidean distance leuclidean
and a term describing points pair’s match in the HSV (Hue,

Saturation, Value) color space lcolor. α and β are the weight

factors set to 0.5 in our case.

lj = leuclidean(pj , qj)lcolor(pj , qj)

leuclidean(pj , qj) =
1

1 + α|pj − qj |2

lcolor(pj , qj) =
1

1 + β|pj,hsv − qj,hsv|2
(2)

To obtain the model’s weight we sum over likelihood values

for every points pair in the reference model as follows:

wi =
∑

j

lj . This likelihood function assures a combined

matching of model’s structure and visual appearance. In the

final step we normalize the previously computed model weight

by applying a relative normalization as described in [26].

The real-time operation of the algorithm is made possible

through various optimization techniques such as downsam-

pling of the point clouds, openMP parallelization and KLD-

based (Kullback-Leibler Divergence) sampling [27] to select

the optimal number of particles.

Why not to track object parts? To answer this question

we refer the reader to scene 1 in Fig. 3, column 3 where top

surfaces of both boxes were grouped into one segment. Had we

taken this segment as a reference cloud the tracking algorithm

would fail due to its limitation to generate multiple reference

clouds during tracking.

C. Trajectory Clustering

The tracked features’ 3D trajectories (see Fig. 3 column

6) are clustered using Alg. 1 in order to find the feature-

object associations. We treat each of the n RGBD features as

a node in a graph, where edge weights represent the maximum

number of consecutive violations of the relative distance

variation threshold (dthreshold), i.e. breaks (optionally, also

pose changes can be checked for better performance). The final

connection matrix is obtained by removing the edges which

have weights that exceed a given percentage (pthreshold) of the

theoretic maximum number of frames. The distance between

features which did not vary are then clustered together.

Algorithm 1: Graph-based trajectory clustering algorithm.

A break between features means that the relative distance

between them exceeded the given threshold.

/* number of tracked features n and number of

time steps m, relative distance variation

threshold dthreshold, max allowed percent of

consecutive breaks pthreshold, and the set of

positions of each feature T */

Input: n, m, dthreshold, pthreshold, T = {t1...tm}
/* relative distances at t1 */

Dreference = pairwiseL2(t1)
/* nr of consecutive breaks between features */

Cbreaks = zeros(n,n)
/* relative distances at t1 */

Tbreaks = zeros(m,n,n)
/* count number of consecutive breaks */

foreach ti ∈ T do
/* relative distances at ti */

Di = pairwiseL2(ti)
/* deviation of distances */

Ei = |Di −Dreference|
/* breaking feature pairs */

Bi = {(f1, f2)|Ei[f1, f2] > dthreshold}
foreach (f1, f2) ∈ Bi do

Cbreaks[f1, f2] + + /* increment counter */

foreach (f1, f2) 6∈ Bi do
Cbreaks[f1, f2] = 0 /* reset counter */

Tbreaks[i] = Cbreaks /* save counter */

/* maximum percentage of consecutive breaks */

Mbreaks = max(Tbreaks)/m
/* final adjacency matrix */

A = getConnections(Mbreaks <= pthreshold)
/* number of clusters based on Laplacian */

nrclusters = nrZeros(eigenValues(diag(degrees(A)) - A))
/* get features clustered by connectivity */

Output: Fclusters = connectedComponents(A)

Fig. 5 shows an evaluation of the clustering algorithm

on 17 scenes from Fig. 7. The use of pthreshold is clearly

advantageous, and the method works well for a range of the

pthreshold and the dthreshold parameters. Since too low values

for dthreshold over-segment the features, values over 1.5cm are

used, and the possible under-segmentations solved by applying

the whole method iteratively until all the objects are clearly

separated.

D. Dense Model Reconstruction

Considering the connected features Fclusters as being part

of the same object, we reconstruct the dense model of the

object using region growing in normal space, which also



Fig. 5. Trajectory clustering success rate on 17 scenes for different values
of pthreshold and dthreshold (in meters).

makes use of the borders found at depth discontinuities, as

shown in Alg. 2. The idea for the region growing constraints

is based on the segmentation described by Mishra et al. [28],

where the authors make use of a predefined fixation point and

a border map. Since we already know the features that are

part of the object, we can easily define a seed point for the

region growing. In order to find the best possible seed point,

we separate the connected features using euclidean clustering,

calculate each of the resulting clusters’ centroid, and then start

growing from these. An important condition of the region

growing is the assumption that objects are often composed

of convex parts [29]. Therefore, we make sure that during

region growing two points are assigned to the same region Ri

if the angle epsthresh between the vector connecting them and

the points normal is close to obtuse (considering the sensor

noise level [22], 89◦ were used). Once all region-feature pairs

have been identified, we reconstruct the dense model. Since in

the trajectory clustering step we already identified the features

that belong to the same object, having multiple regions for the

same object is easily dealt with by merging those regions for

which the corresponding features belong to the same object

into dense models Rj .

VI. EVALUATION AND DISCUSSION

A. Experimental Setup

The system was evaluated on 17 scenes in different con-

figurations as illustrated in Fig. 7. The scenes are numbered

1-17 and arranged according to the legend shown in Fig. 6.

Though our system can iteratively cope with multi-object

scenes, we performed the evaluation on two-object scenes with

the finite number of scene configurations that can occur. These

configurations can be split in three different ways, namely: i)

size, ii) shape, and iii) arrangement. A scene may consist of

two objects of different sizes or the same size. The objects may

Algorithm 2: Region growing with normals & boundaries.

/* set of features Fclusters, distance threshold

droi_thresh, angle threshold epsthresh, seed queue

sq, regions list R, current region Ri, list of

processed points processed */

Input: Fclusters, droi thresh, epsthresh
foreach fi ∈ Fclusters do

ps,i:= centroid(fi) sq.add(ps,i) /* select a seed point

and add it to a queue */

processed(ps,i) = true
Ri := {ps,i} /* initialize region */

while sq.notempty() do
N := {qj‖dist(qj , Ri[c]) < droi thresh}
/* select neighborhood */

foreach qj ∈ N do
if processed(qj) = true then

continue

if boundary(qj) = true then
stopgrowing = true
Ri ← Ri ∪ {qj} processed(qj) = true
break

if deg ( ~ps,iqj , norm(qj)) > epsthresh then
Ri ← Ri ∪ {qj}
processed(qj) = true

else
break

if stopgrowing = false && ∀qj ∈ N boundary(qj ) =
false then

sq ← N

R← Ri

foreach Ri, Rj ∈ R do
if fifj ∈ same object then

Ri ← Ri ∪ {Rj}

Output: Dense models Rj

be either both flat or round or a combination of these two.

They may also occur in different arrangements; completely

separated, only touching, one on top of the other, or in solid

contact. Solid contact refers to both objects being in contact

with each other, whereby the contact area is larger than a

single line (scene number 4 in Fig. 7). Some configurations

are infeasible for our approach. For example a flat object and

a round object cannot be of the same size, or round object on

top of another round object cannot be pushed (one mug on top

of another mug). It is also not possible to have a round object

that is in solid contact with another round object. For this case

we consider solid contact as being two objects touching with

more than one line, for example in scene number 17 where

also the handle of the mug touches the juice box.

Fig. 6. Legend for the different scene configurations. The scenes are shown
in Fig. 7.

It is important to emphasize that the above devised con-

ventions refer to the scenes after a push. The scenes before



interaction were designed such that it is difficult or impossible

to segment them using static segmentation techniques.

Average time to segment one scene from Fig. 7 amounted to

12.5s with the pre-segmentation taking 1.5s, feature extraction

3.5s, pushing 6s (tracking runs at 25fps for up to 10 features)

and dense model reconstruction 1.5s. Apart from tracking

all modules perform linearly with the number of features

and objects respectively and can thus easily be used for

larger and more complex scenes. For all the scenes the push

point estimation algorithm was used, the only exception being

the ’on top’ arrangements for which the algorithm does not

generalize. For this reason and since the scope of the paper is

on the priors from the static segmentation, RGBD features for

textureless objects and the final dense model reconstruction,

we performed the experiments by manually inducing motions

into the corners of the scenes. In our future work we will

address finding a generalized push point algorithm.

B. Results

All the experiments were performed three times for each of

the 17 scenes. All the results are presented in Tab. I which

shows the segmentation success rate for every scene. The

corresponding figures for this data can be found in Fig. 7.

The algorithm was never able to segment the scene number

8 and performed poorly for scenes 6 and 13. In these cases

the contact surface of the two objects is large and the objects

are of the same size. Erroneous reconstruction happens due

to a lack of a sufficiently good boundary estimation near the

touching surface, and therefore the region growing does not

terminate. This could be alleviated by integrating texture/color-

based segmentation methods, which we plan to investigate in

the future.

It is important to note that the overall segmentation was

successful in more than 82% of the experiments. Tab. II shows

that the more objects differ and the less in contact they are

the more successful the segmentation becomes. Our algorithm

performs extremely well in the ’on top’ arrangement which is

very challenging for the static segmentation techniques.

We would like to draw the reader’s attention to all the scenes

with the round objects. It can be noted that the Kinect sensor

from the used viewpoint (mounted on the head of the human

size PR2 robot) always captures mugs as two spatially non-

connected parts. In order to robustly merge these two parts

using segmentation algorithms operating on point clouds or

images of static scenes, model-based segmentation algorithms

are required. While that constitutes a feasible solution, the

system presented in this paper can easily deal with such scenes

without a model by clustering the two parts of the mug since

they move rigidly with respect to each other.

For the scene in bottom row of Fig. 3 we can observe that

there is only one feature on the left object. All the clustering

algorithms trying to explicitly cluster at least one pair of

features with the constant relative distance over time would

fail in this case. Using the graph-based clustering method we

are able to disconnect the two nodes of the graph and infer

that there is a single feature-object association.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a novel interactive segmentation sys-

tem suitable for the segmentation of textureless objects in

cluttered tabletop scenes. Integrated in the system are the

static pre-segmentation based on geometrical categorization,

a push point and direction estimation, RGBD features suitable

for tracking of textureless objects, the graph-based trajectory

clustering algorithm and the dense model reconstruction. A

rigorous evaluation of the system on a set of 17 scenes showed

successful segmentation in 82% of the cases. The results show

the applicability of our system for objects of similar colors,

shapes and sizes on predominantly flat and round surfaces.

Though the results of the presented system are very promis-

ing, there is still several improvements to be made. First, we

will solve the problem depicted in scene number 8 by inte-

grating color and the texture-based segmentation techniques.

Second, we plan to improve our pushing heuristic such that we

can deal with the ’on top’ arrangement. This can be done by

looking for 3D corners as pushing points. One could also use a

different heuristic such as the singulation method presented by

Chang et al. [15]. Lastly we will also address heavy occlusions

and self-occlusions of RGBD features in the tracking step.
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